Quantification and reduction of uncertainties in a wind turbine numerical model based on a global sensitivity analysis and a recursive Bayesian inference approach

A framework to perform quantification and reduction of uncertainties in a wind turbine numerical model using global sensitivity analysis and recursive Bayesian inference method is developed in this paper. We explain how a prior probability distribution on the model parameters is transformed into a posterior probability distribution, by incorporating a physical model and real field noisy observations. Nevertheless, these approaches suffer from the so-called curse of dimensionality. In order to reduce the dimension, Sobol' indices approach for global sensitivity analysis, in the context of wind turbine modelling, is presented. A major issue arising for such inverse problems is identifiabil-ity, i.e. whether the observations are sufficient to unambiguously determine the input parameters that generated the observations. Hereafter, global sensitivity analysis is also used in the context of identifiability.

[1]  John Dalsgaard Sørensen,et al.  Probabilistic Design of Wind Turbines , 2010 .

[2]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[3]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[4]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[6]  M. Jansen Analysis of variance designs for model output , 1999 .

[7]  B. Jonkman Turbsim User's Guide: Version 1.50 , 2009 .

[8]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[9]  Stefano Tarantola,et al.  Uncertainty in Industrial Practice , 2008 .

[10]  Alexandre Janon Analyse de sensibilité et réduction de dimension. Application à l'océanographie , 2012 .

[11]  Youmin Tang,et al.  Sigma-Point Kalman Filter Data Assimilation Methods for Strongly Nonlinear Systems , 2009 .

[12]  Thierry Bastogne,et al.  Limits of variance-based sensitivity analysis for non-identifiability testing in high dimensional dynamic models , 2012, Autom..

[13]  Claire Cannamela,et al.  A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes , 2013, SIAM/ASA J. Uncertain. Quantification.

[14]  Jennifer Annoni,et al.  Optimization Under Uncertainty for Wake Steering Strategies , 2017 .

[15]  David Makowski,et al.  Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models , 2011, Reliab. Eng. Syst. Saf..

[16]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[17]  Alen Alexanderian,et al.  Efficient Computation of Sobol' Indices for Stochastic Models , 2016, SIAM J. Sci. Comput..

[18]  John Dalsgaard Sørensen,et al.  Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates , 2018 .

[19]  J. Hansen,et al.  Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth , 2004 .

[20]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[21]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[22]  P-E Réthoré,et al.  Multi-fidelity wake modelling based on Co-Kriging method , 2016 .

[23]  Maureen Hand,et al.  NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements , 2001 .

[24]  Andrew M. Stuart,et al.  Ensemble Kalman inversion: a derivative-free technique for machine learning tasks , 2018, Inverse Problems.

[25]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[26]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[27]  Daniele Venturi,et al.  Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets , 2016, SIAM J. Sci. Comput..

[28]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[29]  Geir Evensen,et al.  An Ensemble Kalman filter with a 1-D marine ecosystem model , 2002 .

[30]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[31]  R. Kopp,et al.  LINEAR REGRESSION APPLIED TO SYSTEM IDENTIFICATION FOR ADAPTIVE CONTROL SYSTEMS , 1963 .

[32]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[33]  Jeroen A. S. Witteveen,et al.  Wind Turbine Performance Analysis Under Uncertainty , 2011 .

[34]  Daniele Venturi,et al.  Multi-fidelity Gaussian process regression for prediction of random fields , 2017, J. Comput. Phys..

[35]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[36]  Soon-Duck Kwon UNCERTAINTY ANALYSIS OF WIND ENERGY POTENTIAL ASSESSMENT , 2010 .

[37]  J. Jonkman,et al.  Sensitivity of Uncertainty in Wind Characteristics and Wind Turbine Properties on Wind Turbine Extreme and Fatigue Loads , 2019 .

[38]  François M. Hemez,et al.  Simulating the dynamics of wind turbine blades: part II, model validation and uncertainty quantification , 2013 .

[39]  Olivier Roustant,et al.  Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..

[40]  Jason Jonkman,et al.  A digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines , 2020, Journal of Physics: Conference Series.

[41]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[42]  François Bachoc,et al.  Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification , 2013, Comput. Stat. Data Anal..

[43]  Walter Musial,et al.  Determining equivalent damage loading for full-scale wind turbine blade fatigue tests , 2000 .

[44]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.