Interaction properties of solitonics in inhomogeneous optical fibers

In this paper, a generalized nonlinear Schrödinger equation with variable dispersion and nonlinear coefficients, which can be used to describe the pulse transmission in inhomogeneous optical fibers, is investigated analytically. By virtue of the Hirota method, analytic multiple soliton solutions are obtained. Interactions between solitonics are presented through choosing specific nonlinearity functions, and interaction properties of them are analyzed. Results obtained may potentially be useful in the area of optical communications.

[1]  Dmitry I. Sinelshchikov,et al.  Solitary and periodic waves in two-fluid magnetohydrodynamics , 2016, Commun. Nonlinear Sci. Numer. Simul..

[2]  A. Wazwaz Multiple soliton solutions and other exact solutions for a two‐mode KdV equation , 2016 .

[3]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[4]  Wenjun Liu,et al.  Q-switched all-fiber laser with short pulse duration based on tungsten diselenide , 2018 .

[5]  A. Mahalingam,et al.  Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction , 2015 .

[6]  Abdul-Majid Wazwaz,et al.  An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients , 2018, Appl. Math. Comput..

[7]  Peiguang Yan,et al.  70-fs mode-locked erbium-doped fiber laser with topological insulator , 2016, Scientific Reports.

[8]  R. Stolen,et al.  Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. , 1983, Optics letters.

[9]  Wenjun Liu,et al.  Soliton structures in the (1+1)-dimensional Ginzburg–Landau equation with a parity-time-symmetric potential in ultrafast optics , 2018 .

[10]  Wenjun Liu,et al.  Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber , 2018 .

[11]  Jay R. Simpson,et al.  Experimental study of soliton transmission over more than 10,000 km in dispersion-shifted fiber , 1990 .

[12]  Wenjun Liu,et al.  Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration , 2018, Nanotechnology.

[13]  Zhiyi Wei,et al.  Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. , 2017, Optics express.

[14]  Wenjun Liu,et al.  Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. , 2017, Physical review. E.

[15]  Abdul-Majid Wazwaz,et al.  Solving the $$\mathbf{(3+1) }$$(3+1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method , 2017 .

[16]  A. Wazwaz Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation , 2017 .

[17]  L. Mollenauer,et al.  Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. , 1988, Optics letters.

[18]  Wenjun Liu,et al.  Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. , 2017, Nanoscale.

[19]  Jingsong He,et al.  Families of exact solutions of a new extended $$\varvec{(2+1)}$$(2+1)-dimensional Boussinesq equation , 2018 .

[20]  Wenjun Liu,et al.  Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. , 2018, Nanoscale.

[21]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[22]  Wenjun Liu,et al.  Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers , 2017 .

[23]  Wenjun Liu,et al.  Bidirectional all-optical switches based on highly nonlinear optical fibers , 2017 .

[24]  Jingsong He,et al.  Families of exact solutions of a new extended (2+1)-dimensional Boussinesq equation , 2017, 1712.08718.

[25]  A. Wazwaz,et al.  A new integrable ($$3+1$$3+1)-dimensional KdV-like model with its multiple-soliton solutions , 2016 .

[26]  A. Wazwaz A study on a two‐wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist , 2017 .

[27]  Guoquan Zhou,et al.  Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials , 2014 .

[28]  Chao-Qing Dai,et al.  Vector multipole and vortex solitons in two-dimensional Kerr media , 2017 .

[29]  Zhiyi Wei,et al.  CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser , 2018, Nanotechnology.

[30]  Yehuda B. Band,et al.  Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.

[31]  Nikolai A. Kudryashov,et al.  Analytical properties of the perturbed FitzHugh-Nagumo model , 2018, Appl. Math. Lett..

[32]  A. Wazwaz,et al.  Interaction of lumps and dark solitons in the Mel’nikov equation , 2018 .

[33]  A. Wazwaz Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form , 2018 .

[34]  Dmitry I. Sinelshchikov,et al.  On the Jacobi last multipliers and Lagrangians for a family of Liénard-type equations , 2017, Appl. Math. Comput..

[35]  Wenjun Liu,et al.  Optical soliton shaping in dispersion decreasing fibers , 2016 .

[36]  Abdul-Majid Wazwaz,et al.  A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions , 2018 .

[37]  D. Mihalache,et al.  Two-color walking Peregrine solitary waves. , 2017, Optics letters.

[38]  Zhiyi Wei,et al.  Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers , 2018, Photonics Research.

[39]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[40]  Lei Wang,et al.  Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. , 2016, Physical review. E.

[41]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[42]  Bo Tian,et al.  Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. Peacock,et al.  Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Abdul-Majid Wazwaz,et al.  A two-mode modified KdV equation with multiple soliton solutions , 2017, Appl. Math. Lett..

[45]  N. Rosanov,et al.  Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes , 2018, 1804.01643.

[46]  Peter A. Clarkson,et al.  THE DIRECT METHOD IN SOLITON THEORY (Cambridge Tracts in Mathematics 155) , 2006 .

[47]  Wenjun Liu,et al.  Interactions of solitons, dromion-like structures and butterfly-shaped pulses for variable coefficient nonlinear Schrödinger equation , 2018 .

[48]  Lihui Pang,et al.  Study on the control technology of optical solitons in optical fibers , 2016 .

[49]  Wenjun Liu,et al.  Optical properties and applications for MoS 2 -Sb 2 Te 3 -MoS 2 heterostructure materials , 2018 .

[50]  Wenjun Liu,et al.  Titanium Selenide Saturable Absorber Mirror for Passive Q-Switched Er-Doped Fiber Laser , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  D. Mihalache,et al.  Few-cycle spatiotemporal optical solitons in waveguide arrays , 2017 .

[52]  Wenjun Liu,et al.  Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber , 2018 .