Therapeutic monoclonal antibodies

Therapeutic monoclonal antibodies : , Therapeutic monoclonal antibodies : , کتابخانه دیجیتال جندی شاپور اهواز

[1]  D. Burton,et al.  Covalent display of oligosaccharide arrays in microtiter plates. , 2004, Journal of the American Chemical Society.

[2]  R. R. Robinson,et al.  Escherichia coli secretion of an active chimeric antibody fragment. , 1988, Science.

[3]  A. Poupon,et al.  The immunoglobulin fold family: sequence analysis and 3D structure comparisons. , 1999, Protein engineering.

[4]  R. Hansen,et al.  Antibody pharmacokinetics and pharmacodynamics. , 2004, Journal of pharmaceutical sciences.

[5]  S L Morrison,et al.  Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Wayne A Hendrickson,et al.  Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Dominique Bourgeois,et al.  The crystal structure of a llama heavy chain variable domain , 1996, Nature Structural Biology.

[8]  J. McMurry,et al.  Immunogenicity Screening Using in Silico Methods: Correlation between T‐Cell Epitope Content and Clinical Immunogenicity of Monoclonal Antibodies , 2009 .

[9]  Christoph Grundner,et al.  Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120 , 2003, Cell.

[10]  A. Plückthun,et al.  Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. , 1988, Science.

[11]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[12]  Ian A Wilson,et al.  Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. , 2007, Journal of molecular biology.

[13]  K. Roux,et al.  Flexibility of human IgG subclasses. , 1997, Journal of immunology.

[14]  T. T. Wu,et al.  AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY , 1970, The Journal of experimental medicine.

[15]  C. Milstein,et al.  Conformational isomerism and the diversity of antibodies. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Lu,et al.  Therapeutic Antibodies in Clinical Use and Leading Clinical Candidates , 2009 .

[17]  H. Katinger,et al.  The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2G12 Recognizes a Cluster of α1→2 Mannose Residues on the Outer Face of gp120 , 2002, Journal of Virology.

[18]  D. Fremont,et al.  Structural aspects of antibodies and antibody-antigen complexes. , 2007, Ciba Foundation symposium.

[19]  I. Wilson,et al.  Three-dimensional structure of an anti-steroid Fab' and progesterone-Fab' complex. , 1993, Journal of molecular biology.

[20]  Renate Kunert,et al.  Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. , 2005, Immunity.

[21]  Alexander McPherson,et al.  The three-dimensional structure of an intact monoclonal antibody for canine lymphoma , 1992, Nature.

[22]  D. Burton,et al.  Crystal structure of the broadly cross-reactive HIV-1-neutralizing Fab X5 and fine mapping of its epitope. , 2004, Biochemistry.

[23]  Ian A. Wilson,et al.  Molecular basis of crossreactivity and the limits of antibody–antigen complementarity , 1993, Nature.

[24]  Oleg V. Koliasnikov,et al.  Antibody Cdr H3 Modeling Rules: Extension for the Case of Absence of Arg H94 and Asp H101 , 2006, J. Bioinform. Comput. Biol..

[25]  H. Katinger,et al.  Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R L Stanfield,et al.  Antibody-antigen interactions: new structures and new conformational changes. , 1994, Current opinion in structural biology.

[27]  G. Cohen,et al.  The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D R Burton,et al.  Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. , 1989, Science.

[29]  Andrew C. R. Martin,et al.  Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. , 2003, Journal of molecular biology.

[30]  Bette Korber,et al.  Structure of a V3-Containing HIV-1 gp120 Core , 2005, Science.

[31]  W Wang,et al.  Monoclonal Antibody Pharmacokinetics and Pharmacodynamics , 2008, Clinical pharmacology and therapeutics.

[32]  Garrett M. Morris,et al.  Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design , 2001, Science.

[33]  A. Lesk,et al.  Standard conformations for the canonical structures of immunoglobulins. , 1997, Journal of molecular biology.

[34]  Ping Zhu,et al.  Antibody Domain Exchange Is an Immunological Solution to Carbohydrate Cluster Recognition , 2003, Science.

[35]  I. Wilson,et al.  Antigen-induced conformational changes in antibodies: a problem for structural prediction and design. , 1994, Trends in biotechnology.