Colloquium: Role of the H theorem in lattice Boltzmann hydrodynamic simulations

In the last decade, minimal kinetic models, and primarily the lattice Boltzmann equation, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flows with dynamic phase transitions. Besides their practical value as efficient computational tools for the dynamics of complex systems, these minimal models may also represent a new conceptual paradigm in modern computational statistical mechanics: instead of proceeding bottom-up from the underlying microdynamic systems, these minimal kinetic models are built top-down starting from the macroscopic target equations. This procedure can provide dramatic advantages, provided the essential physics is not lost along the way. For dissipative systems, one essential requirement is compliance with the second law of thermodynamics. In this Colloquium, the authors present a chronological survey of the main ideas behind the lattice Boltzmann method, with special focus on the role played by the H theorem in enforcing compliance of the method with macroscopic evolutionary constraints (the second law) as well as in serving as a numerically stable computational tool for fluid flows and other dissipative systems out of equilibrium.

[1]  Axel Klar,et al.  Discretizations for the Incompressible Navier-Stokes Equations Based on the Lattice Boltzmann Method , 2000, SIAM J. Sci. Comput..

[2]  Hudong Chen,et al.  H-theorem and generalized semi-detailed balance condition for lattice gas systems , 1995 .

[3]  R. Gatignol Théorie cinétique des gaz à répartition discrète de vitesses , 1975 .

[4]  Washington Taylor,et al.  Quantum Lattice-Gas Models for the Many-Body Schrödinger Equation , 1997 .

[5]  Orszag,et al.  Reynolds number scaling of cellular automaton hydrodynamics. , 1986, Physical review letters.

[6]  P. Coveney,et al.  Entropic lattice Boltzmann methods , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Alejandro L. Garcia,et al.  Stabilization of thermal lattice Boltzmann models , 1995 .

[8]  Alexander J. Wagner An H-theorem for the lattice Boltzmann approach to hydrodynamics , 1998 .

[9]  Succi,et al.  High-resolution lattice-gas simulation of two-dimensional turbulence. , 1988, Physical review letters.

[10]  Stuart A. Rice,et al.  Quantum Statistical Mechanics , 1963 .

[11]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Sauro Succi,et al.  Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar-Gross-Krook kinetic equation , 1999 .

[14]  Santosh Ansumali,et al.  Single relaxation time model for entropic lattice Boltzmann methods. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[16]  R. Natalini A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws , 1998 .

[17]  D. C. Spanner,et al.  Introduction to Thermodynamics , 1964 .

[18]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[19]  L. Kadanoff Cathedrals and Other Edifices , 1986 .

[20]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[21]  Joel L. Lebowitz,et al.  Boltzmann's Entropy and Time's Arrow , 1993 .

[22]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[23]  Soubbaramayer,et al.  Advances in Kinetic Theory and Continuum Mechanics , 1991 .

[24]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[25]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[26]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[27]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[28]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[29]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[30]  Jean-Pierre Rivet,et al.  Lattice Gas Hydrodynamics , 1987 .

[31]  Bastien Chopard,et al.  Cellular automata modeling , 1998 .

[32]  Elliott H. Lieb,et al.  A Fresh Look at Entropy and the Second Law of Thermodynamics , 2000 .

[33]  Iliya V. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[34]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[35]  I. Karlin,et al.  Stabilization of the lattice boltzmann method by the H theorem: A numerical test , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[37]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[38]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Sauro Succi,et al.  Lattice Boltzmann equation for relativistic quantum mechanics , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Joel Keizer,et al.  Statistical Thermodynamics of Nonequilibrium Processes , 1987 .

[41]  Protopopescu (Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics) , 1988 .

[42]  A. Wehrl General properties of entropy , 1978 .

[43]  Alexander N Gorban,et al.  Maximum Entropy Principle for Lattice Kinetic Equations , 1998 .

[44]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[45]  David A. Meyer Quantum Lattice Gases and Their Invariants , 1997 .

[46]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[47]  Li-Shi Luo,et al.  Unified Theory of Lattice Boltzmann Models for Nonideal Gases , 1998 .

[48]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  J. Boris,et al.  New Directions in Computational Fluid Dynamics , 1989 .

[50]  Sauro Succi,et al.  THERMOHYDRODYNAMIC LATTICE BGK SCHEMES WITH NON-PERTURBATIVE EQUILIBRIA , 1998 .

[51]  J. Broadwell,et al.  Study of rarefied shear flow by the discrete velocity method , 1964, Journal of Fluid Mechanics.

[52]  Sauro Succi,et al.  Equilibria for discrete kinetic equations , 1998 .

[53]  Li-Shi Luo,et al.  Some recent results on discrete velocity models and ramifications for lattice Boltzmann equation , 2000 .

[54]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[55]  Hiroomi Umezawa,et al.  Advanced Field Theory: Micro, Macro, and Thermal Physics , 1993 .

[56]  B. Perthame,et al.  A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .

[57]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[58]  Raoyang Zhang,et al.  A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability , 1998 .

[59]  W. T. Grandy,et al.  Kinetic theory : classical, quantum, and relativistic descriptions , 2003 .

[60]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[61]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[62]  X. He,et al.  Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.

[63]  Iliya V. Karlin,et al.  Entropy Function Approach to the Lattice Boltzmann Method , 2002 .

[64]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[65]  U. Frisch,et al.  Lattice gas models for 3D hydrodynamics , 1986 .

[66]  Hudong Chen,et al.  H-theorem and origins of instability in thermal lattice Boltzmann models , 2000 .

[67]  Statistical Mechanics: A Selective Review of Two Central Issues , 1999, math-ph/0010018.

[68]  Peter V. Coveney,et al.  From Molecular Dynamics to Dissipative Particle Dynamics , 1999 .

[69]  Chen,et al.  Lattice Boltzmann thermohydrodynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  R. Lewis,et al.  A Unifying Principle in Statistical Mechanics , 1967 .

[71]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  Matthaeus,et al.  Lattice Boltzmann model for simulation of magnetohydrodynamics. , 1991, Physical review letters.

[73]  Hudong Chen Entropy, fluctuation and transport in lattice gas systems with generalized semi-detailed balance , 1997, Journal of Plasma Physics.

[74]  Sauro Succi,et al.  The lattice Boltzmann equation: a new tool for computational fluid-dynamics , 1991 .

[75]  Bernie D. Shizgal,et al.  Rarefied Gas Dynamics: Theory and Simulations , 1994 .

[76]  D. Ruelle Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics , 1998, chao-dyn/9812032.

[77]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[78]  Hudong Chen,et al.  Digital Physics Approach to Computational Fluid Dynamics: Some Basic Theoretical Features , 1997 .

[79]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[80]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .