Prime Compilation of Non-Clausal Formulae
暂无分享,去创建一个
Joao Marques-Silva | Alexey Ignatiev | Alessandro Previti | António Morgado | Joao Marques-Silva | Alexey Ignatiev | António Morgado | Alessandro Previti
[1] Cesare Tinelli,et al. Handbook of Satisfiability , 2021, Handbook of Satisfiability.
[2] Archie Blake. Canonical expressions in Boolean algebra , 1938 .
[3] George Becker,et al. CNF and DNF Considered Harmful for Computing Prime Implicants/Implicates , 2004, Journal of Automated Reasoning.
[4] Willard Van Orman Quine,et al. The Problem of Simplifying Truth Functions , 1952 .
[5] Randal E. Bryant,et al. COSMOS: a compiled simulator for MOS circuits , 1987, DAC '87.
[6] Marco Cadoli,et al. A Survey on Knowledge Compilation , 1997, AI Commun..
[7] W. Quine. On Cores and Prime Implicants of Truth Functions , 1959 .
[8] E. McCluskey. Minimization of Boolean functions , 1956 .
[9] Joao Marques-Silva,et al. Fast, flexible MUS enumeration , 2015, Constraints.
[10] Teow-Hin Ngair,et al. A New Algorithm for Incremental Prime Implicate Generation , 1993, IJCAI.
[11] Ron Rymon. An SE-tree-based prime implicant generation algorithm , 2005, Annals of Mathematics and Artificial Intelligence.
[12] B. M. Fulk. MATH , 1992 .
[13] Pierre Marquis,et al. Knowledge Compilation Using Theory Prime Implicates , 1995, IJCAI.
[14] Pierre L. Tison,et al. Generalization of Consensus Theory and Application to the Minimization of Boolean Functions , 1967, IEEE Trans. Electron. Comput..
[15] Robert Schrag,et al. Compilation for Critically Constrained Knowledge Bases , 1996, AAAI/IAAI, Vol. 1.
[16] Raymond Reiter,et al. A Theory of Diagnosis from First Principles , 1986, Artif. Intell..
[17] Ulrich Junker,et al. QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.
[18] Johan de Kleer. An Improved Incremental Algorithm for Generating Prime Implicates , 1992, AAAI.
[19] Volker Sorge,et al. A New Set of Algebraic Benchmark Problems for SAT Solvers , 2005, SAT.
[20] Claude E. Shannon,et al. The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..
[21] Henry A. Kautz,et al. Towards Understanding and Harnessing the Potential of Clause Learning , 2004, J. Artif. Intell. Res..
[22] Joao Marques-Silva,et al. Knowledge Compilation with Empowerment , 2012, SOFSEM.
[23] Laurent Simon,et al. Efficient Consequence Finding , 2001, IJCAI.
[24] Richard C. T. Lee,et al. A New Algorithm for Generating Prime Implicants , 1970, IEEE Transactions on Computers.
[25] Fahiem Bacchus,et al. Solving MAXSAT by Solving a Sequence of Simpler SAT Instances , 2011, CP.
[26] James Bailey,et al. Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization , 2005, PADL.
[27] Jürg Kohlas,et al. Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .
[28] Meir Kalech,et al. Exploring the Duality in Conflict-Directed Model-Based Diagnosis , 2012, AAAI.
[29] Olivier Coudert,et al. Implicit and incremental computation of primes and essential primes of Boolean functions , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.
[30] Pierre Marquis,et al. Consequence Finding Algorithms , 2000 .
[31] Koen Claessen,et al. A New SAT-Based Algorithm for Symbolic Trajectory Evaluation , 2005, CHARME.
[32] Peter Jackson,et al. Computing Prime Implicates Incrementally , 1992, CADE.
[33] Alexander A. Semenov,et al. Transalg: a Tool for Translating Procedural Descriptions of Discrete Functions to SAT (Tool Paper) , 2014, ArXiv.
[34] Aaron D. Wyner,et al. The Synthesis of TwoTerminal Switching Circuits , 1993 .
[35] R. J. Beynon,et al. Computers , 1985, Comput. Appl. Biosci..
[36] Jörg Brauer,et al. Existential Quantification as Incremental SAT , 2011, CAV.
[37] Meghyn Bienvenu,et al. Prime Implicates and Prime Implicants: From Propositional to Modal Logic , 2009, J. Artif. Intell. Res..
[38] Frank van Harmelen,et al. Debugging Incoherent Terminologies , 2007, Journal of Automated Reasoning.
[39] Joao Marques-Silva,et al. Partial MUS Enumeration , 2013, AAAI.
[40] Enrico Pontelli,et al. Conjunctive Representations in Contingent Planning: Prime Implicates Versus Minimal CNF Formula , 2011, AAAI.
[41] Lakhdar Sais,et al. Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form , 2014, JELIA.
[42] Zohar Manna,et al. Checking Safety by Inductive Generalization of Counterexamples to Induction , 2007, Formal Methods in Computer Aided Design (FMCAD'07).
[43] Krzysztof Czarnecki,et al. Feature Diagrams and Logics: There and Back Again , 2007 .
[44] Pierre Marquis,et al. A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..
[45] Alex Kean,et al. An Incremental Method for Generating Prime Implicants/Impicates , 1990, J. Symb. Comput..
[46] Peter J. Stuckey,et al. There Are No CNF Problems , 2013, SAT.
[47] Dov M. Gabbay,et al. Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .
[48] Luigi Palopoli,et al. Algorithms for Selective Enumeration of Prime Implicants , 1999, Artif. Intell..
[49] Neil V. Murray,et al. Prime Implicate Tries , 2009, TABLEAUX.