Prime Compilation of Non-Clausal Formulae

Formula compilation by generation of prime implicates or implicants finds a wide range of applications in AI. Recent work on formula compilation by prime implicate/implicant generation often assumes a Conjunctive/Disjunctive Normal Form (CNF/DNF) representation. However, in many settings propositional formulae are naturally expressed in non-clausal form. Despite a large body of work on compilation of non-clausal formulae, in practice existing approaches can only be applied to fairly small formulae, containing at most a few hundred variables. This paper describes two novel approaches for the compilation of non-clausal formulae either with prime implicants or implicates, that is based on propositional Satisfiability (SAT) solving. These novel algorithms also find application when computing all prime implicates of a CNF formula. The proposed approach is shown to allow the compilation of non-clausal formulae of size significantly larger than existing approaches.

[1]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[2]  Archie Blake Canonical expressions in Boolean algebra , 1938 .

[3]  George Becker,et al.  CNF and DNF Considered Harmful for Computing Prime Implicants/Implicates , 2004, Journal of Automated Reasoning.

[4]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .

[5]  Randal E. Bryant,et al.  COSMOS: a compiled simulator for MOS circuits , 1987, DAC '87.

[6]  Marco Cadoli,et al.  A Survey on Knowledge Compilation , 1997, AI Commun..

[7]  W. Quine On Cores and Prime Implicants of Truth Functions , 1959 .

[8]  E. McCluskey Minimization of Boolean functions , 1956 .

[9]  Joao Marques-Silva,et al.  Fast, flexible MUS enumeration , 2015, Constraints.

[10]  Teow-Hin Ngair,et al.  A New Algorithm for Incremental Prime Implicate Generation , 1993, IJCAI.

[11]  Ron Rymon An SE-tree-based prime implicant generation algorithm , 2005, Annals of Mathematics and Artificial Intelligence.

[12]  B. M. Fulk MATH , 1992 .

[13]  Pierre Marquis,et al.  Knowledge Compilation Using Theory Prime Implicates , 1995, IJCAI.

[14]  Pierre L. Tison,et al.  Generalization of Consensus Theory and Application to the Minimization of Boolean Functions , 1967, IEEE Trans. Electron. Comput..

[15]  Robert Schrag,et al.  Compilation for Critically Constrained Knowledge Bases , 1996, AAAI/IAAI, Vol. 1.

[16]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[17]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[18]  Johan de Kleer An Improved Incremental Algorithm for Generating Prime Implicates , 1992, AAAI.

[19]  Volker Sorge,et al.  A New Set of Algebraic Benchmark Problems for SAT Solvers , 2005, SAT.

[20]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[21]  Henry A. Kautz,et al.  Towards Understanding and Harnessing the Potential of Clause Learning , 2004, J. Artif. Intell. Res..

[22]  Joao Marques-Silva,et al.  Knowledge Compilation with Empowerment , 2012, SOFSEM.

[23]  Laurent Simon,et al.  Efficient Consequence Finding , 2001, IJCAI.

[24]  Richard C. T. Lee,et al.  A New Algorithm for Generating Prime Implicants , 1970, IEEE Transactions on Computers.

[25]  Fahiem Bacchus,et al.  Solving MAXSAT by Solving a Sequence of Simpler SAT Instances , 2011, CP.

[26]  James Bailey,et al.  Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization , 2005, PADL.

[27]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[28]  Meir Kalech,et al.  Exploring the Duality in Conflict-Directed Model-Based Diagnosis , 2012, AAAI.

[29]  Olivier Coudert,et al.  Implicit and incremental computation of primes and essential primes of Boolean functions , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[30]  Pierre Marquis,et al.  Consequence Finding Algorithms , 2000 .

[31]  Koen Claessen,et al.  A New SAT-Based Algorithm for Symbolic Trajectory Evaluation , 2005, CHARME.

[32]  Peter Jackson,et al.  Computing Prime Implicates Incrementally , 1992, CADE.

[33]  Alexander A. Semenov,et al.  Transalg: a Tool for Translating Procedural Descriptions of Discrete Functions to SAT (Tool Paper) , 2014, ArXiv.

[34]  Aaron D. Wyner,et al.  The Synthesis of TwoTerminal Switching Circuits , 1993 .

[35]  R. J. Beynon,et al.  Computers , 1985, Comput. Appl. Biosci..

[36]  Jörg Brauer,et al.  Existential Quantification as Incremental SAT , 2011, CAV.

[37]  Meghyn Bienvenu,et al.  Prime Implicates and Prime Implicants: From Propositional to Modal Logic , 2009, J. Artif. Intell. Res..

[38]  Frank van Harmelen,et al.  Debugging Incoherent Terminologies , 2007, Journal of Automated Reasoning.

[39]  Joao Marques-Silva,et al.  Partial MUS Enumeration , 2013, AAAI.

[40]  Enrico Pontelli,et al.  Conjunctive Representations in Contingent Planning: Prime Implicates Versus Minimal CNF Formula , 2011, AAAI.

[41]  Lakhdar Sais,et al.  Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form , 2014, JELIA.

[42]  Zohar Manna,et al.  Checking Safety by Inductive Generalization of Counterexamples to Induction , 2007, Formal Methods in Computer Aided Design (FMCAD'07).

[43]  Krzysztof Czarnecki,et al.  Feature Diagrams and Logics: There and Back Again , 2007 .

[44]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[45]  Alex Kean,et al.  An Incremental Method for Generating Prime Implicants/Impicates , 1990, J. Symb. Comput..

[46]  Peter J. Stuckey,et al.  There Are No CNF Problems , 2013, SAT.

[47]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[48]  Luigi Palopoli,et al.  Algorithms for Selective Enumeration of Prime Implicants , 1999, Artif. Intell..

[49]  Neil V. Murray,et al.  Prime Implicate Tries , 2009, TABLEAUX.