Soft quasicrystals–Why are they stable?

In the last two years we have witnessed the exciting experimental discovery of soft matter with nontrivial quasiperiodic long-range order–a new form of matter termed a soft quasicrystal. Two groups have independently discovered such order in soft matter: Zeng et al. in a system of dendrimer liquid crystals; and Takano et al. in a system of ABC star-shaped polymers. These newly discovered soft quasicrystals not only provide exciting platforms for the fundamental study of both quasicrystals and of soft matter, but also hold the promise for new applications based on self-assembled nanomaterials with unique physical properties that take advantage of the quasiperiodicity, such as complete and isotropic photonic band-gap materials. Here we provide a concise review of the emerging field of soft quasicrystals, suggesting that the existence of two natural length-scales, along with three-body interactions, may constitute the underlying source of their stability.

[1]  W. Goddard,et al.  Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation. , 2004, Journal of the American Chemical Society.

[2]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[3]  P J Steinhardt,et al.  The physics of quasicrystals , 1987 .

[4]  Bak,et al.  Icosahedral crystals: Where are the atoms? , 1986, Physical review letters.

[5]  Demetrios N. Christodoulides,et al.  Wave and defect dynamics in nonlinear photonic quasicrystals , 2006, Nature.

[6]  David K. Smith,et al.  Self-assembly using dendritic building blocks - towards controllable nanomaterials , 2005 .

[7]  Ron Lifshitz,et al.  The square Fibonacci tiling , 2002 .

[8]  Paul C. Martin,et al.  Unified Hydrodynamic Theory for Crystals, Liquid Crystals, and Normal Fluids , 1972 .

[9]  Glenn H. Fredrickson,et al.  Dynamics of Block Copolymers: Theory and Experiment , 1996 .

[10]  The anomalous structure factor of dense star polymer solutions , 1998, cond-mat/9806260.

[11]  Quasicrystals: A Matter of Definition , 2003, cond-mat/0302380.

[12]  C. Tanford Macromolecules , 1994, Nature.

[13]  T. Hahn International tables for crystallography , 2002 .

[14]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[15]  Zhaolin Li,et al.  Band gap and wave guiding effect in a quasiperiodic photonic crystal , 1999 .

[16]  C. N. Likos,et al.  Phase Diagram of Star Polymer Solutions , 1999 .

[17]  N. David Mermin,et al.  The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals , 1992 .

[18]  C. Santangelo,et al.  Soft spheres make more mesophases , 2006, cond-mat/0609570.

[19]  Stark,et al.  Theory of a critical point in the blue-phase-III-isotropic phase diagram. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Lowen,et al.  Polydisperse star polymer solutions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Mermin,et al.  Instability of quasicrystalline order in the local Kalugin-Kitaev-Levitov model. , 1988, Physical review. B, Condensed matter.

[22]  Samuel A. Safran,et al.  Statistical Thermodynamics of Surfaces , 1994 .

[23]  Ron Lifshitz,et al.  THEORETICAL MODEL FOR FARADAY WAVES WITH MULTIPLE-FREQUENCY FORCING , 1997 .

[24]  R. Lifshitz Theory of color symmetry for periodic and quasiperiodic crystals , 1997 .

[25]  T. Dotera,et al.  CELL CRYSTALS : KELVIN'S POLYHEDRA IN BLOCK COPOLYMER MELTS , 1999 .

[26]  D. C. Wright,et al.  The space groups of axial crystals and quasicrystals , 1991 .

[27]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[28]  Shtrikman,et al.  Broken icosahedral symmetry: A quasicrystalline structure for cholesteric blue phase III. , 1986, Physical review letters.

[29]  H. Löwen,et al.  Star Polymers Viewed as Ultrasoft Colloidal Particles , 1998 .

[30]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[31]  Jean M. J. Fréchet,et al.  Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers , 1992 .

[32]  Z. Stadnik Physical Properties of Quasicrystals , 1999 .

[33]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[34]  T. Lubensky,et al.  Abrikosov dislocation lattice in a model of the cholesteric-to-smectic-A transition. , 1988, Physical review. A, General physics.

[35]  M. Schreiber,et al.  Quasicrystals : an introduction to structure, physical properties, and applications , 2002 .

[36]  The foam analogy: from phases to elasticity. , 2003, Journal of colloid and interface science.

[37]  Triplet interactions in star polymer solutions , 2000 .

[38]  V. Percec,et al.  Supramolecular dendritic liquid quasicrystals , 2004, Nature.

[39]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[40]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[41]  P. M. D. Wolff,et al.  Incommensurate and commensurate modulated structures , 2006 .

[42]  I. Hamley Block Copolymers in Solution: Fundamentals and Applications , 2005 .

[43]  Ho,et al.  Mean-field-theory study of the energetics of icosahedral, decagonal, and dodecagonal quasicrystals. , 1988, Physical review. B, Condensed matter.

[44]  N. Tanaka,et al.  A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer , 2005 .

[45]  G. Grest,et al.  Star Polymers: Experiment, Theory, and Simulation , 2007 .

[46]  Sethna,et al.  Quasicrystalline textures of cholesteric liquid crystals: Blue phase III? , 1986, Physical review letters.

[47]  Swelling kinetics of the onion phase , 2000, cond-mat/0009017.

[48]  Exotic fluids and crystals of soft polymeric colloids , 2002, cond-mat/0205109.

[49]  Suzuki,et al.  High resolution transmission electron microscopy observation of thermally fluctuating phasons in decagonal Al-Cu-Co , 2000, Physical review letters.

[50]  Equilibrium properties of highly asymmetric star-polymer mixtures. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  S. Takeuchi,et al.  HRTEM observation of phason flips in Al–Cu–Co decagonal quasicrystal , 2002 .

[52]  I. Hamley Block Copolymers in Solution: Fundamentals and Applications: Hamley/Block Copolymers in Solution: Fundamentals and Applications , 2005 .

[53]  K. D. Singer,et al.  Self-organization of supramolecular helical dendrimers into complex electronic materials , 2002, Nature.

[54]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[55]  Ron Lifshitz,et al.  The symmetry of quasiperiodic crystals , 1996 .

[56]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[57]  Effective Interaction between Star Polymers , 1999, cond-mat/9904444.

[58]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[59]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[60]  Maximizing Entropy by Minimizing Area: Towards a New Principle of Self-Organization , 2001, cond-mat/0103171.

[61]  M. Senechal Quasicrystals and geometry , 1995 .

[62]  R. Lifshitz The Rebirth of Crystallography , 2002 .

[63]  E. Shakhnovich,et al.  Stability study of icosahedral phases in diblock copolymer melt , 1998 .

[64]  J. S. Patel,et al.  Characterization of a new helical smectic liquid crystal , 1989, Nature.

[65]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[66]  Michael Rubinstein,et al.  A Self-Consistent Mean Field Model of a Starburst Dendrimer: Dense Core vs Dense Shell , 1996 .

[67]  P. Anderson Basic Notions of Condensed Matter Physics , 1983 .

[68]  Magnetically ordered quasicrystals: enumeration of spin groups and calculation of magnetic selection rules. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[69]  Müller Model equations for two-dimensional quasipatterns. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  S. Lecommandoux,et al.  On the physics of block copolymers , 2006 .

[71]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[72]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[73]  N. D. Mermin,et al.  Superspace groups without the embedding: The link between superspace and Fourier-space crystallography. , 1996, Physical review letters.

[74]  T. Gemma,et al.  Dodecagonal quasicrystal in a polymeric alloy , 2006 .

[75]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[76]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[77]  Bin Chen,et al.  Liquid Crystalline Networks Composed of Pentagonal, Square, and Triangular Cylinders , 2005, Science.

[78]  Akhlesh Lakhtakia,et al.  The physics of liquid crystals, 2nd edition: P.G. De Gennes and J. Prost, Published in 1993 by Oxford University Press, Oxford, UK, pp 7,597 + xvi, ISBN: 0-19-852024 , 1995 .

[79]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[80]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[81]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[82]  Heinrich M. Jaeger,et al.  Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds , 2001, Nature.

[83]  W. S. Edwards,et al.  Parametrically excited quasicrystalline surface waves. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Mermin,et al.  Mean-field theory of quasicrystalline order. , 1985, Physical review letters.

[85]  M. Pitsikalis,et al.  Asymmetric Star Polymers: Synthesis and Properties , 1999 .

[86]  Gilad Barak,et al.  Dislocation dynamics in a dodecagonal quasiperiodic structure , 2005, cond-mat/0510796.

[87]  G. Mehl Quasi-periodic organization in soft self-assembling matter. , 2005, Angewandte Chemie.

[88]  N. Tanaka,et al.  Mesoscopic Archimedean tilings in polymeric stars , 2005 .

[89]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[90]  Michael Baake,et al.  Directions in Mathematical Quasicrystals , 2000 .

[91]  Gerhard Gompper,et al.  Self-assembling amphiphilic systems , 1995 .

[92]  G. Ariel,et al.  Kinetics of surfactant adsorption: the free energy approach , 2001 .

[93]  S. Gruner,et al.  Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons , 2004, Science.

[94]  O. Sjaastad Epilogue , 1891, The Hospital.

[95]  S. Wada,et al.  Observation of Cylinder-Based Microphase-Separated Structures from ABC Star-Shaped Terpolymers Investigated by Electron Computerized Tomography , 2004 .

[96]  A. Tsai Metallurgy of Quasicrystals , 1999 .

[97]  J. McTague,et al.  Should All Crystals Be bcc? Landau Theory of Solidification and Crystal Nucleation , 1978 .

[98]  M. C. Netti,et al.  Complete photonic bandgaps in 12-fold symmetric quasicrystals , 2000, Nature.

[99]  C. Ross Found , 1869, The Dental register.