On the glass temperature under extreme pressures.

The application of a modified Simon-Glatzel-type relation [Z. Anorg. Allg. Chem. 178, 309 (1929)] for the pressure evolution of the glass temperature is presented, namely, Tg(P)=Tg0[1+DeltaP/(pi+Pg0)]1/bexp[-(DeltaP/c)], where (Tg0,Pg0) are the reference temperature and pressure, DeltaP=P-Pg0, -pi is the negative pressure asymptote, b is the power exponent, and c is the damping pressure coefficient. The discussion is based on the experimental Tg(P) data for magmatic silicate melt albite, polymeric liquid crystal P8, and glycerol. The latter data are taken from Cook et al. [J. Chem. Phys. 100, 5178 (1994)] and from the authors' dielectric relaxation time (tau(P)) measurements, which employs the novel pressure counterpart of the Vogel-Fulcher-Tammann equation: tau(P)=tau0P exp[DPDeltaP/(P0-P)], where DeltaP=P-PSL (PSL is the stability limit hidden under negative pressure), P0 is the estimation of the ideal glass pressure, and D(P) is the isothermal fragility strength coefficient. Results obtained suggest the hypothetical maximum of the Tg(P) curve, which can be estimated due to the application of the supporting derivative-based analysis. A hypothetical common description of glass formers characterized by dTg/dP>0 and dTg/dP<0 coefficients is suggested. Finally, the hypothetical link between molecular and colloidal glass formers is recalled.

[1]  S. Rzoska,et al.  Soft matter under exogenic impacts , 2007 .

[2]  W. Poon,et al.  Glasses under high pressure: a link to colloidal science? , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  S. Rzoska,et al.  Derivative-based analysis for temperature and pressure evolution of dielectric relaxation times in vitrifying liquids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  V. Skripov,et al.  Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity , 2006 .

[5]  A. Drozd-Rzoska Pressure dependence of the glass temperature in supercooled liquids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Siegfried Hunklinger,et al.  Pressure-induced isothermal glass transition of small organic molecules , 2005 .

[7]  Riccardo Casalini,et al.  Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure , 2005 .

[8]  H. Mao,et al.  Melting of dense sodium. , 2005, Physical review letters.

[9]  L. Landa,et al.  Thermodynamic nature of the glass transition interval , 2004 .

[10]  G. Floudas Effects of pressure on systems with intrinsic orientational order , 2004 .

[11]  C. Roland,et al.  Viscosity at the dynamic crossover in o-terphenyl and salol under high pressure. , 2004, Physical review letters.

[12]  Y. Ohishi,et al.  Determination of low-pressure crystalline--liquid phase boundary of SnI(4). , 2004, The Journal of chemical physics.

[13]  Wilson C. K. Poon,et al.  Colloids as Big Atoms , 2004, Science.

[14]  G. Wegner,et al.  Effects of temperature and pressure on the stability and mobility of phases in rigid rod poly (p-phenylenes). , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  C. Roland,et al.  Thermodynamical scaling of the glass transition dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Naír Rodríguez-Hornedo,et al.  General principles of pharmaceutical solid polymorphism: a supramolecular perspective. , 2004, Advanced drug delivery reviews.

[17]  G. Jenner Role of the Medium in High Pressure Organic Reactions. A Review , 2004 .

[18]  S. Rzoska,et al.  Changes in dynamic crossover with temperature and pressure in glass-forming diethyl phthalate. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  A. Sokolov,et al.  Universality of the dynamic crossover in glass-forming liquids: a "magic" relaxation time. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  P. McMillan New materials from high pressure experiments: Challenges and opportunities , 2003 .

[21]  T. Grande,et al.  Metastable melting and pressure-induced amorphisation of GeSe2 , 2002 .

[22]  P. McMillan New materials from high-pressure experiments , 2002, Nature materials.

[23]  Sow-Hsin Chen,et al.  Small-angle neutron scattering study of the temperature-dependent attractive interaction in dense L64 copolymer micellar solutions and its relation to kinetic glass transition. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Beiner,et al.  Two crossover regions in the dynamics of glass forming epoxy resins , 2002 .

[25]  D. I. Bower,et al.  An Introduction to Polymer Physics: Polymer blends, copolymers and liquid-crystal polymers , 2002 .

[26]  David I. Bower,et al.  An Introduction to Polymer Physics: Frontmatter , 2002 .

[27]  M Fuchs,et al.  Multiple Glassy States in a Simple Model System , 2002, Science.

[28]  M. C. Valsakumar,et al.  Glass transition and dynamical heterogeneities in charged colloidal suspensions under pressure. , 2001, Physical review letters.

[29]  H. Maris,et al.  Liquids Under Negative Pressure , 2002 .

[30]  V. V. Kechin Melting curve equations at high pressure , 2001 .

[31]  N. Bagdassarov,et al.  Pressure dependence of T g in silicate glasses from electrical impedance measurements , 2001 .

[32]  Thomas M Truskett,et al.  The Kauzmann Paradox Revisited , 2001 .

[33]  V. Skripov,et al.  Viscosity of liquids in the melting line and in the supercooled state , 2001 .

[34]  F. Stillinger,et al.  Isotropic tensile strength of molecular glasses , 2001 .

[35]  M. Paluch,et al.  Does Fragility Depend on Pressure? A Dynamic Light Scattering Study of a Fragile Glass-Former , 2001 .

[36]  E. Donth The glass transition : relaxation dynamics in liquids and disordered materials , 2001 .

[37]  B. Wunderlich,et al.  High Pressure Differential Scanning Calorimetry of poly(4-methyl-pentene-1) , 2000 .

[38]  L. Burakovsky,et al.  Analysis of dislocation mechanism for melting of elements: Pressure dependence , 2000, cond-mat/0003494.

[39]  Günther W. H. Höhne,et al.  High pressure differential scanning calorimetry on polymers , 1999 .

[40]  W. Grellmann,et al.  Temperature dependence of dynamic yield stress in amorphous polymers as indicator for the dynamic glass transition at negative pressure , 1999 .

[41]  M. Ferrer,et al.  Supercooled liquids and the glass transition: Temperature as the control variable , 1998 .

[42]  P. Habdas,et al.  On the isothermal pressure behaviour of the relaxation times for supercooled glass-forming liquids , 1998 .

[43]  O. Andersson,et al.  Relaxation Studies of Poly(propylene glycol) under High Pressure , 1998 .

[44]  Trybula,et al.  COEXISTENCE OF PARAELECTRIC/PROTON-GLASS AND FERROELECTRIC (ANTIFERROELECTRIC) ORDERS IN Rb_{1-x}(NH_{4})_{x}H_{2}AsO_{4} CRYSTALS , 1998 .

[45]  T. Nieuwenhuizen Ehrenfest relations at the glass transition: solution to an old paradox , 1997, cond-mat/9707260.

[46]  W. Oliver Relaxation Phenomena and Thermodynamics of Liquids at Very High Pressures , 1996 .

[47]  V. V. Kechin Thermodynamically based melting-curve equation , 1995 .

[48]  Richard L. Cook,et al.  Pressure and temperature dependent viscosity of two glass forming liquids: Glycerol and dibutyl phthalate , 1994 .

[49]  D. Demus,et al.  Mathematical Description of Strongly Nonlinear Pressure Dependence of Phase Transition Temperatures , 1993 .

[50]  J. Poirier Introduction to the Physics of the Earth's Interior: Melting , 1991 .

[51]  Angell,et al.  Glass in a stretched state formed by negative-pressure vitrification: Trapping in and relaxing out. , 1989, Physical review. B, Condensed matter.

[52]  Samara,et al.  Pressure-induced suppression of the proton-glass phase and isotope effects in Rb1-x(NH4)xH2PO4. , 1987, Physical review letters.

[53]  E. Donth,et al.  Zur allgemeinen Theorie der Druckabhängigkeit des Glasübergangs und ihre Anwendung auf den Beginn von Fließerscheinungen in glasartigen Polymeren bei tieferen Temperaturen , 1980 .

[54]  C. Angell,et al.  Pressure dependence of the glass transition temperature in ionic liquids and solutions. Evidence against free volume theories , 1977 .

[55]  I. Sanchez,et al.  Effects of Pressure on the Equilibrium Properties of Glass-Forming Polymers , 1976 .

[56]  G. P. Johari,et al.  Dielectric properties of glycerol in the range 0.1–105 Hz, 218–357 K, 0–53 kb , 1972 .

[57]  S. Babb Parameters in the Simon Equation Relating Pressure and Melting Temperature , 1963 .

[58]  A. Jayaraman,et al.  FUSION CURVE AND POLYMORPHIC TRANSITIONS OF CESIUM AT HIGH PRESSURES , 1962 .

[59]  F. Bundy Phase Diagram of Rubidium to 150 000 kg/cm 2 and 400°C , 1959 .

[60]  Franz Simon,et al.  Bemerkungen zur Schmelzdruckkurve , 1929 .