Characterizing a fiber-based frequency comb with electro-optic modulator

We report on the characterization of a commercial core fiber-based frequency comb equipped with an intracavity free-space electro-optic modulator (EOM). We investigate the relationship between the noise of the pump diode and the laser relative intensity noise (RIN) and demonstrate the use of a low-noise current supply to substantially reduce the laser RIN. By measuring several critical transfer functions, we evaluate the potential of the EOM for comb repetition rate stabilization. We also evaluate the coupling to other relevant parameters of the comb. From these measurements, we infer the capabilities of the femtosecond laser comb to generate very-low-phase-noise microwave signals when phase-locked to a high-spectral-purity ultra-stable laser.

[1]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[2]  L. Hollberg,et al.  Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. , 2004, Optics letters.

[3]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[4]  A. Clairon,et al.  Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock , 2009, 0901.3654.

[5]  Sakae Kawato,et al.  A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. , 2010, Optics express.

[6]  M. Lours,et al.  Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation , 2011, 1104.4495.

[7]  P. Lemonde,et al.  Ultrastable lasers based on vibration insensitive cavities , 2009, 0901.4717.

[8]  P. Rosenbusch,et al.  An optical lattice clock with spin-polarized 87Sr atoms , 2007, 0710.0086.

[9]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[10]  Günter Steinmeyer,et al.  Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise , 2010 .

[11]  D. Leibrandt,et al.  Spherical Reference Cavities for Ultra-Stable Lasers in Non-Laboratory Environments | NIST , 2011 .

[12]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[13]  A Hati,et al.  Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes , 2011, IEEE Photonics Journal.

[14]  W. Zhang,et al.  Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[16]  William C. Swann,et al.  Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions , 2006 .

[17]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[18]  F. Kärtner,et al.  Carrier-envelope phase control by a composite plate. , 2006, Optics express.

[19]  Reichert,et al.  Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser , 2000, Physical review letters.

[20]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[21]  S. Dawkins,et al.  An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock , 2010, 1003.4213.

[22]  Scott A. Diddams,et al.  Photonic Generation of Low-Phase-Noise Microwave Signals , 2011 .

[23]  J. Millo,et al.  Thermal-noise-limited optical cavity , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[24]  M. Kirchner,et al.  Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. , 2011, Optics letters.

[25]  Burghard Lipphardt,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2002 .

[26]  Hirokazu Matsumoto,et al.  Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb. , 2006, Optics express.

[27]  A. Luiten,et al.  Ultra-low noise microwave extraction from fiber-based optical frequency comb , 2009, EFTF-2010 24th European Frequency and Time Forum.

[28]  J Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2007, Optics letters.

[29]  Gesine Grosche,et al.  The Stability of an Optical Clock Laser Transferred to the Interrogation Oscillator for a Cs Fountain , 2008, IEEE Transactions on Instrumentation and Measurement.

[30]  Mark Notcutt,et al.  Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. , 2011, Optics express.

[31]  L. Hollberg,et al.  Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator. , 2002, Optics letters.

[32]  Jun Ye,et al.  Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. , 2005, Optics letters.

[33]  C W Oates,et al.  Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. , 2001, Physical review letters.

[34]  Ph Laurent,et al.  Absolute frequency measurement of the 40Ca+ 4s(2)S_(1/2)-3d(2)D_(5/2) clock transition. , 2009, Physical review letters.

[35]  Lennart Robertsson,et al.  Femtosecond-laser-based optical clockwork with instability, 2002, Optics letters.

[36]  William C Swann,et al.  High-performance, vibration-immune, fiber-laser frequency comb. , 2009, Optics letters.

[37]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[38]  M. Abgrall,et al.  Absolute Frequency Measurement of the 40Ca+ 4s 2S1/2 -3d2D5/2 Clock Transition , 2008, 0806.1414.

[39]  I Hartl,et al.  Fiber-laser frequency combs with subhertz relative linewidths. , 2006, Optics letters.

[40]  Franz X Kärtner,et al.  Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift. , 2010, Optics letters.

[41]  Christian Chardonnet,et al.  Long-distance frequency transfer over an urban fiber link using optical phase stabilization , 2008, 0807.1882.

[42]  Nathan R. Newbury,et al.  Searching for applications with a fine-tooth comb , 2011 .

[43]  L. Hollberg,et al.  Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. , 2005, Optics letters.

[44]  M. Lours,et al.  Sub-100 attoseconds stability optics-to-microwave synchronization , 2010 .

[45]  G Santarelli,et al.  Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. , 2011, Optics letters.

[46]  L. Hollberg,et al.  Noise properties of microwave signals synthesized with femtosecond lasers , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[47]  William C. Swann,et al.  Low-noise fiber-laser frequency combs , 2007 .

[48]  William C. Swann,et al.  Low-noise fiber-laser frequency combs (Invited) , 2007 .

[49]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[50]  Leo W. Hollberg,et al.  Low-noise synthesis of microwave signals from an optical source , 2005 .