A swarm optimization-based search algorithm for the quadratic knapsack problem with conflict Graphs

[1]  Mhand Hifi,et al.  A modified descent method-based heuristic for binary quadratic knapsack problems with conflict graphs , 2019, Annals of Operations Research.

[2]  Mhand Hifi,et al.  A hybrid algorithm for packing identical spheres into a container , 2018, Expert Syst. Appl..

[3]  Mingchang Chih,et al.  Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem , 2017, Swarm Evol. Comput..

[4]  Lei Wu,et al.  A New Optimization Model for the Sustainable Development: Quadratic Knapsack Problem with Conflict Graphs , 2017 .

[5]  Jin-Kao Hao,et al.  An iterated "hyperplane exploration" approach for the quadratic knapsack problem , 2017, Comput. Oper. Res..

[6]  Mohammed Azmi Al-Betar,et al.  Taming the 0/1 knapsack problem with monogamous pairs genetic algorithm , 2016, Expert Syst. Appl..

[7]  Saman Aminbakhsh,et al.  Discrete particle swarm optimization method for the large-scale discrete time-cost trade-off problem , 2016, Expert Syst. Appl..

[8]  Lei Wu,et al.  A hybrid guided neighborhood search for the disjunctively constrained knapsack problem , 2015 .

[9]  Steven Li,et al.  A simplified binary harmony search algorithm for large scale 0-1 knapsack problems , 2015, Expert Syst. Appl..

[10]  Mingchang Chih,et al.  Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem , 2015, Appl. Soft Comput..

[11]  Ching-Jung Ting,et al.  Particle swarm optimization algorithm for the berth allocation problem , 2014, Expert Syst. Appl..

[12]  Guido Perboli,et al.  Packing problems in Transportation and Supply Chain: new problems and trends , 2014 .

[13]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[14]  Guimin Chen,et al.  A Particle Swarm Optimizer with Multi-stage Linearly-Decreasing Inertia Weight , 2009, 2009 International Joint Conference on Computational Sciences and Optimization.

[15]  Ulrich Pferschy,et al.  The Knapsack Problem with Conflict Graphs , 2009, J. Graph Algorithms Appl..

[16]  Mhand Hifi,et al.  Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem , 2007, Comput. Oper. Res..

[17]  Mhand Hifi,et al.  A reactive local search-based algorithm for the disjunctively constrained knapsack problem , 2006, J. Oper. Res. Soc..

[18]  Mohammad Sohel Rahman,et al.  Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls , 2006, Comput. Oper. Res..

[19]  Bryant A. Julstrom Greedy, genetic, and greedy genetic algorithms for the quadratic knapsack problem , 2005, GECCO '05.

[20]  Alain Billionnet,et al.  An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem , 2004, Eur. J. Oper. Res..

[21]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Takeo Yamada,et al.  Heuristic and Exact Algorithms for the Disjunctively Constrained Knapsack Problem , 2002 .

[23]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[24]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[26]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[27]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[28]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[29]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.