Does carrier gas have a role on the yield and alignment of CNT fibers

[1]  Jaegeun Lee,et al.  Estimating Carbon Nanotube Length from Isotropic Cloud Point of Carbon Nanotube/Chlorosulfonic Acid Solutions , 2021 .

[2]  T. Narayanan,et al.  SAXS/WAXS Investigation of Amyloid-β(16-22) Peptide Nanotubes , 2021, Frontiers in Bioengineering and Biotechnology.

[3]  D. Tune,et al.  Catalyst-Mediated Enhancement of Carbon Nanotube Textiles by Laser Irradiation: Nanoparticle Sweating and Bundle Alignment , 2021, Catalysts.

[4]  Seung Min Kim,et al.  Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity , 2021 .

[5]  A. Jorio,et al.  Raman spectroscopy for carbon nanotube applications , 2021 .

[6]  O. Kanoun,et al.  Customizing hydrothermal properties of inkjet printed sensitive films by functionalization of carbon nanotubes , 2020, Nanotechnology.

[7]  Y. Levendis,et al.  On the Influences of Carrier Gas Type and Flow Rate on CVD Synthesis of CNTs from Postconsumer Polyethylene , 2020 .

[8]  Gijs H. J. M. Ratering,et al.  Forecasting continuous carbon nanotube production in the floating catalyst environment , 2020 .

[9]  J. Elliott,et al.  High throughput production of single-wall carbon nanotube fibres independent of sulfur-source. , 2019, Nanoscale.

[10]  J. Bahadur,et al.  Evaporation-induced structural evolution of the lamellar mesophase: a time-resolved small-angle X-ray scattering study , 2019, Journal of Applied Crystallography.

[11]  S. Thakre,et al.  Characterizing Microvoids in Regenerated Cellulose Fibers Obtained from Viscose and Lyocell Processes , 2019, Macromolecules.

[12]  S. Hochgreb,et al.  Mapping the parameter space for direct-spun carbon nanotube aerogels , 2019, Carbon.

[13]  R. Liang,et al.  Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping , 2017 .

[14]  A. Boies,et al.  The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration , 2017, Scientific Reports.

[15]  J. Joshi,et al.  Kinetic study of nitrogen doped carbon nanotubes in a fixed bed , 2017 .

[16]  D. Wen,et al.  Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers , 2016 .

[17]  V. Shanov,et al.  The effect of a convection vortex on sock formation in the floating catalyst method for carbon nanotube synthesis , 2016 .

[18]  Hai M. Duong,et al.  Post-Treatments for Multifunctional Property Enhancement of Carbon Nanotube Fibers from the Floating Catalyst Method. , 2016, ACS applied materials & interfaces.

[19]  Juan J Vilatela,et al.  Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning. , 2015, ACS nano.

[20]  Kapil Bharti,et al.  DiameterJ: A validated open source nanofiber diameter measurement tool. , 2015, Biomaterials.

[21]  Suresh C. Sharma,et al.  Effect of different carrier gases and their flow rates on the growth of carbon nanotubes , 2015 .

[22]  R. M. Erb,et al.  Understanding and overcoming shear alignment of fibers during extrusion. , 2015, Soft matter.

[23]  J. Joshi,et al.  Fluidized bed synthesis of carbon nanotubes: Reaction mechanism, rate controlling step and overall rate of reaction , 2014 .

[24]  J. Wang,et al.  High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity , 2014, Nature Communications.

[25]  Agnieszka Lekawa-Raus,et al.  Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring , 2014 .

[26]  W. Huh,et al.  Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis , 2013 .

[27]  Markus J. Buehler,et al.  Nonlinear material behaviour of spider silk yields robust webs , 2012, Nature.

[28]  Yue Zhao,et al.  Kinetics and mechanisms of heterogeneous reaction of gaseous hydrogen peroxide on mineral oxide particles. , 2011, Environmental science & technology.

[29]  D. Jia,et al.  THE EFFECT OF CARRIER GASES ON CNTS GROWTH BY FLOATING CATALYSIS METHOD THROUGH PYROLYSIS OF FERROCENE , 2010 .

[30]  D. Sathiyamoorthy,et al.  Novel catalytic route to bulk production of high purity carbon nanotube , 2008 .

[31]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[32]  D. Sathiyamoorthy,et al.  The production of high purity carbon nanotubes with high yield using cobalt formate catalyst on carbon black , 2007 .

[33]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[34]  Jingqi Li,et al.  Effects of oxygen and nitrogen on carbon nanotube growth using a microwave plasma chemical vapor deposition technique , 2003 .

[35]  Ji Liang,et al.  Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method , 2001 .

[36]  Jong-Wan Park,et al.  Growth of carbon nanotubes by chemical vapor deposition , 2001 .

[37]  M. Burghard,et al.  Polarized raman spectroscopy on isolated single-wall carbon nanotubes. , 2000, Physical review letters.

[38]  A. Kamperman,et al.  Argon solubility in liquid steel , 2000 .

[39]  J. F. Lancaster,et al.  Metallurgical effects of the weld thermal cycle , 1980 .

[40]  Takurou Kobayashi,et al.  Effect of Alloying Elements on Nitrogen Content of Steel Weld Metals (Report 1) : Welding in Nitrogen Atmosphere , 1972 .

[41]  D. Gomersall Solubility of Nitrogen in Liquid Iron Alloys , 1967 .

[42]  R. Brokaw,et al.  Approximate Formulas for the Viscosity and Thermal Conductivity of Gas Mixtures , 1958 .

[43]  T. L. Ibbs,et al.  The Thermal Conductivity of Gas Mixtures , 1929 .