RETRACTED: An overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors

Abstract This article has been retracted at the request of the Editor-in-Chief, with agreement of the authors: please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy ). Substantial parts of this review paper are similar to the texts of existing papers in the literature. The co-authors state that the corresponding author submitted the manuscript without their approval. The following works are affected: IEEE Transactions on Power Electronics, 26 (2011) 3472-3480, http://dx.doi.org/10.1109/TPEL.2011.2161096 . The Journal of Physical Chemistry Letters, 4 (2013) 1260-1267, http://dx.doi.org/10.1021/jz4002967 . The Journal of Physical Chemistry Letters, 4 (2013), 3367-3376, http://dx.doi.org/10.1021/jz4014163 . Physical Chemistry Chemical Physics, 16 (2014), 6519-6538, http://dx.doi.org/10.1039/c3cp55186e . The Authors unreservedly apologise for this violation of the publishing policies, and offer sincere apologies to the parties affected. The journal apologises to its readers and the authors that the overlap was not detected during the submission and review process.

[1]  Chung-an Max Wu,et al.  Effect of Salt Depletion on Charging Dynamics in Nanoporous Electrodes , 2010 .

[2]  Jianjun Niu,et al.  Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material , 2006 .

[3]  Laurent Pilon,et al.  Simulating Electric Double Layer Capacitance of Mesoporous Electrodes with Cylindrical Pores , 2011 .

[4]  Bobby G. Sumpter,et al.  Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. , 2010, ACS nano.

[5]  Branko N. Popov,et al.  Modeling the Effects of Electrode Composition and Pore Structure on the Performance of Electrochemical Capacitors , 2002 .

[6]  W. A. Adams,et al.  Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications , 1999 .

[7]  Albert Migliori,et al.  Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. , 2009, Journal of the American Chemical Society.

[8]  Shuai Ban,et al.  Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent , 2013 .

[9]  D. Sauer,et al.  Modelling the effects of charge redistribution during self-discharge of supercapacitors , 2010 .

[10]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[11]  Aidan P. Thompson,et al.  Nonequilibrium molecular dynamics simulation of electro-osmotic flow in a charged nanopore , 2003 .

[12]  N Georgi,et al.  A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. , 2011, Physical chemistry chemical physics : PCCP.

[13]  S. Baldelli,et al.  Surface structure at the ionic liquid-electrified metal interface. , 2008, Accounts of chemical research.

[14]  S. Bhattacharjee,et al.  Electrokinetic and Colloid Transport Phenomena , 2006 .

[15]  B. Conway,et al.  Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries , 1997 .

[16]  Jianzhong Wu,et al.  Density functional theory for chemical engineering: From capillarity to soft materials , 2006 .

[17]  T. Ohsaka,et al.  Measurements of Differential Capacitance at Mercury/Room-Temperature Ionic Liquids Interfaces , 2007 .

[18]  Laurent Pilon,et al.  Mesoscale modeling of electric double layer capacitors with three-dimensional ordered structures , 2013 .

[19]  Kevin L. Shuford,et al.  Molecular Dynamics Study of Interfacial Confinement Effects of Aqueous NaCl Brines in Nanoporous Carbon , 2010 .

[20]  C.,et al.  Open Archive Toulouse Archive Ouverte (OATAO) , 2012 .

[21]  Peter T Cummings,et al.  Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. , 2012, Journal of chemical theory and computation.

[22]  Laurent Pilon,et al.  First-principles thermal modeling of electric double layer capacitors under constant-current cycling , 2014 .

[23]  Daniel Moga,et al.  Modeling and Sizing of Supercapacitors , 2008 .

[24]  Y. Shim,et al.  Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. , 2010, ACS nano.

[25]  Sewan Choi,et al.  Advanced Dynamic Simulation of Supercapacitors Considering Parameter Variation and Self-Discharge , 2011, IEEE Transactions on Power Electronics.

[26]  Alexander V. Neimark,et al.  Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption , 2012 .

[27]  De-en Jiang,et al.  A classical density functional theory for interfacial layering of ionic liquids , 2011 .

[28]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[29]  A. Kornyshev,et al.  Superionic state in double-layer capacitors with nanoporous electrodes , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Se-Il Jung,et al.  Electrochemical characteristics of activated carbon/Ppy electrode combined with P(VdF-co-HFP)/PVP for EDLC , 2004 .

[31]  P. Kurzweil,et al.  A new monitoring method for electrochemical aggregates by impedance spectroscopy , 2004 .

[32]  Rui Qiao,et al.  Microstructure and Capacitance of the Electrical Double Layers at the Interface of Ionic Liquids and Planar Electrodes , 2009 .

[33]  Jennifer Black,et al.  Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution , 2010 .

[34]  V. I. Kogan,et al.  Self-Discharge Related to Iron Ions and its Effect on the Parameters of HES PbO2 ∣ H2SO4 ∣ C Systems , 2007 .

[35]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[36]  Z. Sokołowska,et al.  Electric double layer capacitance of restricted primitive model for an ionic fluid in slit-like nanopores: A density functional approach. , 2012, The Journal of chemical physics.

[37]  Branko N. Popov,et al.  A Mathematical Model of Oxide/Carbon Composite Electrode for Supercapacitors , 2003 .

[38]  Carlos M. Pereira,et al.  The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface – Effect of temperature on the differential capacitance , 2008 .

[39]  Jean-Michel Vinassa,et al.  Impact of Calendar Life and Cycling Ageing on Supercapacitor Performance , 2009, IEEE Transactions on Vehicular Technology.

[40]  Douglas Henderson,et al.  On the influence of ionic association on the capacitance of an electrical double layer , 2001 .

[41]  Hamid Gualous,et al.  Experimental study of supercapacitor serial resistance and capacitance variations with temperature , 2003 .

[42]  D. Do,et al.  On the Cavitation-Like Pore Blocking in Ink-Bottle Pore: Evolution of Hysteresis Loop with Neck Size , 2013 .

[43]  David B. Robinson,et al.  Optimization of power and energy densities in supercapacitors , 2010 .

[44]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[45]  Alfred Rufer,et al.  A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors With Maximum Efficiency Point Tracking (MEPT) , 2006, IEEE Transactions on Industrial Electronics.

[46]  John Newman,et al.  Predictions of Specific Energies and Specific Powers of Double‐Layer Capacitors Using a Simplified Model , 2000 .

[47]  Peter T. Cummings,et al.  Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature , 2013 .

[48]  Volker Presser,et al.  Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors , 2014 .

[49]  John W. Weidner,et al.  Mathematical Modeling of Hybrid Asymmetric Electrochemical Capacitors , 2014 .

[50]  Mark W. Verbrugge,et al.  Microstructural Analysis and Mathematical Modeling of Electric Double-Layer Supercapacitors , 2005 .

[51]  Vladimir V. Stegailov,et al.  Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors , 2010 .

[52]  Douglas Henderson,et al.  Monte Carlo study of the capacitance of the double layer in a model molten salt , 1999 .

[53]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[54]  V. I. Kogan,et al.  Mathematical Model of Heterogeneous Electrochemical Capacitors and Calculation of Their Parameters , 2006 .

[55]  Hamid Gualous,et al.  Frequency, thermal and voltage supercapacitor characterization and modeling , 2007 .

[56]  P. Kurzweil,et al.  Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products , 2008 .

[57]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[58]  Dirk Uwe Sauer,et al.  Heat generation in double layer capacitors , 2006 .

[59]  Dongsheng Ma,et al.  The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes , 2011 .

[60]  William E. Henson,et al.  Optimal battery/ultracapacitor storage combination , 2008 .

[61]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[62]  Wendy G. Pell,et al.  Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour , 2001 .

[63]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[64]  Jean-Michel Vinassa,et al.  Embedded Fractional Nonlinear Supercapacitor Model and Its Parametric Estimation Method , 2010, IEEE Transactions on Industrial Electronics.

[65]  Bingqing Wei,et al.  Effect of temperature on the capacitance of carbon nanotube supercapacitors. , 2009, ACS nano.

[66]  Kaoru Dokko,et al.  Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors , 2008 .

[67]  Srdjan M. Lukic,et al.  Energy Storage Systems for Transport and Grid Applications , 2010, IEEE Transactions on Industrial Electronics.

[68]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[69]  Jianzhong Wu,et al.  Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. , 2013, The journal of physical chemistry letters.

[70]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[71]  Hamid Gualous,et al.  DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications—Polynomial Control Strategy , 2010, IEEE Transactions on Industrial Electronics.

[72]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[73]  De-en Jiang,et al.  Density functional theory for differential capacitance of planar electric double layers in ionic liquids , 2011 .

[74]  A. Neimark,et al.  Density functional theory model of adsorption on amorphous and microporous silica materials. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[75]  Sheng Dai,et al.  Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. , 2012, The journal of physical chemistry letters.

[76]  Cuong Ton-That,et al.  Self-discharge of carbon-based supercapacitors with organic electrolytes , 2000 .

[77]  C. Lokhande,et al.  Metal oxide thin film based supercapacitors , 2011 .

[78]  John Ralston,et al.  Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature , 2008 .

[79]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[80]  Hao Jiang,et al.  Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes , 2012, Advanced materials.

[81]  Samvel Avakovich Kazaryan,et al.  Self-Discharge of Heterogeneous Electrochemical Supercapacitor of PbO2 | H2SO4 | C Related to Manganese and Titanium Ions , 2008 .

[82]  H. D. Cochran,et al.  Molecular dynamics simulation of interfacial electrolyte behaviors in nanoscale cylindrical pores , 2002 .

[83]  Alicia M. Oickle,et al.  Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors , 2009 .

[84]  Jennifer Black,et al.  Effects of charge redistribution on self-discharge of electrochemical capacitors , 2009 .

[85]  S. C. Parker,et al.  Nanostructuring of β-MnO2: The Important Role of Surface to Bulk Ion Migration , 2013 .

[86]  Oleg Borodin,et al.  On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores. , 2013, The journal of physical chemistry letters.

[87]  Oleg Borodin,et al.  Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. , 2010, Journal of the American Chemical Society.

[88]  H. Gualous,et al.  Self-Discharge Characterization and Modeling of Electrochemical Capacitor Used for Power Electronics Applications , 2009, IEEE Transactions on Power Electronics.

[89]  Bobby G. Sumpter,et al.  Structure and charging kinetics of electrical double layers at large electrode voltages , 2010 .

[90]  Ying Zhang,et al.  Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications , 2011 .

[91]  John Newman,et al.  The Influence of Side Reactions on the Performance of Electrochemical Double‐Layer Capacitors , 1996 .

[92]  Peter T. Cummings,et al.  Modeling of Supercapacitors , 2014 .

[93]  Jan Forsman,et al.  Differential Capacitance of Room Temperature Ionic Liquids: The Role of Dispersion Forces , 2010 .

[94]  Arun S. Mujumdar,et al.  Analysis of a Model for an Electrochemical Capacitor , 2011 .

[95]  Jianjun Niu,et al.  Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes , 2004 .

[96]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[97]  Mark Asta,et al.  Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations. , 2013, Accounts of chemical research.

[98]  H. Gualous,et al.  Supercapacitor Characterization and Thermal Modelling With Reversible and Irreversible Heat Effect , 2011, IEEE Transactions on Power Electronics.

[99]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[100]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[101]  Li Jiang,et al.  Supercapacitors: Review of Materials and Fabrication Methods , 2013 .

[102]  Douglas Henderson,et al.  The capacitance of the solvent primitive model double layer at low effective temperatures , 2000 .

[103]  N. Aluru,et al.  Ion concentrations and velocity profiles in nanochannel electroosmotic flows , 2003 .

[104]  Dirk Uwe Sauer,et al.  Detailed analysis of the self-discharge of supercapacitors , 2011 .

[105]  Yves Scudeller,et al.  Multi-level reduced-order thermal modeling of electrochemical capacitors , 2006 .

[106]  Rui Qiao,et al.  Physical origins of apparently enhanced viscosity of interfacial fluids in electrokinetic transport , 2011 .

[107]  Bin Xu,et al.  Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity , 2008 .

[108]  Keryn Lian,et al.  A First Principles Approach to Develop a Dynamic Model of Electrochemical Capacitors , 2010, IEEE Transactions on Power Electronics.

[109]  I. Samoylov,et al.  Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6]. , 2009, Physical chemistry chemical physics : PCCP.

[110]  John Newman,et al.  Desalting by Means of Porous Carbon Electrodes , 1971 .

[111]  Eric F Darve,et al.  Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  Yuichiro Asakawa,et al.  Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors , 2009 .

[113]  Oleg Borodin,et al.  Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/LiPF6 Electrolyte near Graphite Surface as a Function of Electrode Potential , 2012 .

[114]  Vidvuds Ozolins,et al.  Ab Initio Study of the Charge-Storage Mechanisms in RuO2-Based Electrochemical Ultracapacitors , 2012 .

[115]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[116]  Oleg Borodin,et al.  Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study , 2012 .

[117]  H. Andreas,et al.  Temperature-Dependent Structure and Electrochemical Behavior of RuO2/Carbon Nanocomposites. , 2011 .

[118]  V. V. Chaban,et al.  Structure and dynamics in methanol and its lithium ion solution confined by carbon nanotubes , 2009 .

[119]  R. J. Hunter Foundations of Colloid Science , 1987 .

[120]  Jianzhong Wu,et al.  Density-functional theory for complex fluids. , 2007, Annual review of physical chemistry.

[121]  Venkat R. Subramanian,et al.  Analytical solution for the impedance of porous electrodes , 2002 .

[122]  Pierre-Louis Taberna,et al.  Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C , 2013 .

[123]  J. Freund Electro-osmosis in a nanometer-scale channel studied by atomistic simulation , 2002 .

[124]  Ardalan Vahidi,et al.  Predictive Control of Voltage and Current in a Fuel Cell–Ultracapacitor Hybrid , 2010, IEEE Transactions on Industrial Electronics.

[125]  S. Bose,et al.  Carbon-based nanostructured materials and their composites as supercapacitor electrodes , 2012 .

[126]  John Ralston,et al.  Differential capacitance of the double layer at the electrode/ionic liquids interface. , 2010, Physical chemistry chemical physics : PCCP.

[127]  N. Aluru,et al.  Charge inversion and flow reversal in a nanochannel electro-osmotic flow. , 2004, Physical review letters.

[128]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[129]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[130]  Kai Zhu,et al.  First-Principles Theory of Electrochemical Capacitance of Nanostructured Materials: Dipole-Assisted Subsurface Intercalation of Lithium in Pseudocapacitive TiO2 Anatase Nanosheets , 2011 .

[131]  S. Pierfederici,et al.  Energy Management in a Fuel Cell/Supercapacitor Multisource/Multiload Electrical Hybrid System , 2009, IEEE Transactions on Power Electronics.