Superlattice-doped silicon detectors: progress and prospects

In this paper we review the physics and performance of silicon detectors passivated with wafer-scale molecular beam epitaxy (MBE) and atomic layer deposition (ALD). MBE growth of a two-dimensional (2D) doping superlattice on backside-illuminated (BSI) detectors provides nearly perfect protection from interface traps, even at trap densities in excess of 1014 cm-2. Superlattice-doped, BSI CMOS imaging detectors show no measurable degradation of quantum efficiency or dark current from long-term exposure to pulsed DUV lasers. Wafer-scale superlattice-doping has been used to passivate CMOS and CCD imaging arrays, fully-depleted CCDs and photodiodes, and large-area avalanche photodiodes. Superlattice-doped CCDs with ALD-grown antireflection coatings achieved world record quantum efficiency at deep and far ultraviolet wavelengths (100-300nm). Recently we have demonstrated solar-blind, superlattice doped avalanche photodiodes using integrated metal-dielectric coatings to achieve selective detection of ultraviolet light in the 200-250 nm spectral range with high out-of-band rejection.

[1]  E. H. Nicollian Surface Passivation of Semiconductors , 1971 .

[2]  William T. Thompson,et al.  UV detectors aboard SOHO , 1999, Optics & Photonics.

[3]  Michael E. Hoenk,et al.  High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays , 2013 .

[4]  Andre Stesmans,et al.  Degradation of the thermal oxide of the Si/SiO2/Al system due to vacuum ultraviolet irradiation , 1995 .

[5]  Michael P Lesser,et al.  Enhancing back-illuminated performance of astronomical CCDs , 1998, Astronomical Telescopes and Instrumentation.

[6]  Arokia Nathan,et al.  CCD Image Sensors in Deep-Ultraviolet: Degradation Behavior and Damage Mechanisms , 2005 .

[7]  J. Cable,et al.  One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes , 1993 .

[8]  Elena Sabbi,et al.  Wide Field Camera 3 CCD quantum efficiency hysteresis: characterization and mitigation , 2009, Optical Engineering + Applications.

[9]  Michael E. Hoenk,et al.  Delta-doped back-illuminated CMOS imaging arrays: progress and prospects , 2009, Organic Photonics + Electronics.

[10]  Raj Korde,et al.  Present status of radiometric quality silicon photodiodes , 2003 .

[11]  Paul Jerram,et al.  Back-thinned CMOS sensor optimization , 2010, OPTO.

[12]  Raymond Hayes,et al.  Ultraviolet And Extreme Ultraviolet Response Of Charge-Coupled-Device Detectors , 1987 .

[13]  R. Gupta,et al.  Damage to solid-state photodiodes by vacuum ultraviolet radiation , 2005 .

[14]  Tom Elliott,et al.  Backside Charging Of The CCD , 1985, Optics & Photonics.

[15]  Morley M. Blouke,et al.  Charge-Coupled Device Pinning Technologies , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[16]  Michael E. Hoenk,et al.  Atomically precise surface engineering of silicon CCDs for enhanced UV quantum efficiency , 2013 .

[17]  Arokia Nathan,et al.  CCD Detection of 157 nm photons , 2003 .

[18]  Michael E. Hoenk,et al.  Growth of a delta‐doped silicon layer by molecular beam epitaxy on a charge‐coupled device for reflection‐limited ultraviolet quantum efficiency , 1992 .

[19]  Todd J. Jones,et al.  Ultrastable and uniform EUV and UV detectors , 2000, SPIE Optics + Photonics.

[20]  Michael E. Hoenk,et al.  Epitaxial growth of p+ silicon on a backside-thinned CCD for enhanced UV response , 1992, Electronic Imaging.

[21]  Michael E. Hoenk,et al.  Wide band antireflection coatings deposited by atomic layer deposition , 2013, Optics & Photonics - NanoScience + Engineering.

[22]  J. Geist,et al.  Quantum efficiency stability of silicon photodiodes. , 1987, Applied optics.

[23]  Jean-Marc Defise,et al.  In-orbit performances of the EIT instrument on board SOHO and intercalibration with the EIT Calroc Sounding Rocket program , 1998, Optics & Photonics.

[24]  Michael E. Hoenk,et al.  Delta-doped CCDs: high QE with long-term stability at UV and visible wavelengths , 1994, Astronomical Telescopes and Instrumentation.

[25]  Jacek A. Majewski,et al.  Modeling of Semiconductor Nanostructures with nextnano 3 , 2006 .

[26]  David Schiminovich,et al.  Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications. , 2012, Applied optics.

[27]  B Bates,et al.  Interference filters for the far ultraviolet (1700 A to 2400 A). , 1966, Applied optics.

[28]  Joseph A. Sgro,et al.  The DUV Stability of Superlattice-Doped CMOS Detector Arrays , 2013 .