A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems

We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.

[1]  Jean-Jacques Strodiot,et al.  Duality and optimality conditions for generalized equilibrium problems involving DC functions , 2010, J. Glob. Optim..

[2]  Alfredo N. Iusem,et al.  Proximal Methods in Vector Optimization , 2005, SIAM J. Optim..

[3]  Mark Goh,et al.  Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions , 2016, J. Optim. Theory Appl..

[4]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[5]  João X. da Cruz Neto,et al.  A relaxed projection method for solving multiobjective optimization problems , 2017, Eur. J. Oper. Res..

[6]  El Bernoussi Souad,et al.  Algorithms for Solving a Class of Nonconvex Optimization Problems. Methods of Subgradients , 1986 .

[7]  Orizon Pereira Ferreira,et al.  A subgradient method for multiobjective optimization , 2013, Comput. Optim. Appl..

[8]  Wen-yuSun,et al.  PROXIMAL POINT ALGORITHM FOR MINIMIZATION OF DC FUNCTION , 2003 .

[9]  G. C. Bento,et al.  A Proximal Point-Type Method for Multicriteria Optimization , 2014, Set-Valued and Variational Analysis.

[10]  W. Oettli,et al.  Simplified Optimality Conditions for Minimizing the Difference of Vector-Valued Functions , 2001 .

[11]  Antoine Soubeyran,et al.  A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem , 2018, Ann. Oper. Res..

[12]  Xiaoqi Yang,et al.  Duality for Multiobjective Optimization via Nonlinear Lagrangian Functions , 2004 .

[13]  Adil M. Bagirov,et al.  Solving DC programs using the cutting angle method , 2015, J. Glob. Optim..

[14]  João X. da Cruz Neto,et al.  The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem , 2018, SIAM J. Optim..

[15]  Reiner Horst,et al.  Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and D.C. Optimization problems , 1988, Math. Program..

[16]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[17]  P. Roberto Oliveira,et al.  An interior proximal method in vector optimization , 2011, Eur. J. Oper. Res..

[18]  B. Mordukhovich Variational Analysis and Applications , 2018 .

[19]  Antoine Soubeyran,et al.  A proximal algorithm with quasi distance. Application to habit's formation , 2012 .

[20]  Jonathan M. Borwein,et al.  On difference convexity of locally Lipschitz functions , 2011 .

[21]  Kaj Holmberg,et al.  A production-transportation problem with stochastic demand and concave production costs , 1999, Math. Program..

[22]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[23]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[24]  M. Ferris,et al.  On the Clarke subdifferential of the distance function of a closed set , 1992 .

[25]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[26]  Paul-Emile Maingé,et al.  Convergence of New Inertial Proximal Methods for DC Programming , 2008, SIAM J. Optim..

[27]  G. C. Bento,et al.  A Generalized Inexact Proximal Point Method for Nonsmooth Functions that Satisfies Kurdyka Lojasiewicz Inequality , 2015 .

[28]  L. Thibault Subdifferentials of nonconvex vector-valued functions , 1982 .

[29]  Boris S. Mordukhovich,et al.  Hybrid approximate proximal algorithms for efficient solutions in vector optimization , 2011 .

[30]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[31]  Ellen H. Fukuda,et al.  On the convergence of the projected gradient method for vector optimization , 2011 .

[32]  B. Svaiter,et al.  A steepest descent method for vector optimization , 2005 .

[33]  Jen-Chih Yao,et al.  Approximate proximal methods in vector optimization , 2007, Eur. J. Oper. Res..

[34]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[35]  Shengjie Li,et al.  Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps , 2014, J. Optim. Theory Appl..

[36]  Boris S. Mordukhovich,et al.  Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization , 2010 .

[37]  Richard M. Soland,et al.  A multicriteria approach to the location of public facilities , 1980 .

[38]  Mark Goh,et al.  A new algorithm for linearly constrained c-convex vector optimization with a supply chain network risk application , 2015, Eur. J. Oper. Res..

[39]  Mark Goh,et al.  Nonsmooth multiobjective programming with quasi-Newton methods , 2014, Eur. J. Oper. Res..

[40]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[41]  K. Lewin Frontiers in Group Dynamics , 1947 .

[42]  Joao Carlos de Oliveira Souza,et al.  A proximal point algorithm for DC fuctions on Hadamard manifolds , 2015, J. Glob. Optim..

[43]  Le Dung Muu,et al.  One step from DC optimization to DC mixed variational inequalities , 2010 .

[44]  Antoine Soubeyran,et al.  Generalized inexact proximal algorithms : habit ’ s formation with resistance to change , following worthwhile changes , 2014 .

[45]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[46]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[47]  Phan Nhat Tinh,et al.  CONVEX VECTOR FUNCTIONS AND THEIR SUBDIFFERENTIAL , 1998 .

[48]  Ellen H. Fukuda,et al.  A SURVEY ON MULTIOBJECTIVE DESCENT METHODS , 2014 .

[49]  João X. da Cruz Neto,et al.  The self regulation problem as an inexact steepest descent method for multicriteria optimization , 2012, European Journal of Operational Research.

[50]  Bo Wen,et al.  A proximal difference-of-convex algorithm with extrapolation , 2016, Computational Optimization and Applications.

[51]  P. Roberto Oliveira,et al.  A scalarization proximal point method for quasiconvex multiobjective minimization , 2016, J. Glob. Optim..

[52]  Alfredo N. Iusem,et al.  A Projected Gradient Method for Vector Optimization Problems , 2004, Comput. Optim. Appl..

[53]  José Yunier Bello Cruz,et al.  A Subgradient Method for Vector Optimization Problems , 2013, SIAM J. Optim..

[54]  Marshall Scott Poole,et al.  Handbook of Organizational Change and Innovation , 2004 .

[55]  F. Clarke Generalized gradients and applications , 1975 .

[56]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[57]  A. Lewis,et al.  Clarke critical values of subanalytic Lipschitz continuous functions , 2005 .

[58]  M. Minami Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .