The contribution of slippage-like processes to genome evolution

[1]  John M. Hancock,et al.  Generation of VNTRs and heteroplasmy by sequence turnover in the mitochondrial control region of two elephant seal species , 1993, Journal of Molecular Evolution.

[2]  John M. Hancock The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution , 1995, Journal of Molecular Evolution.

[3]  Aleksandar Milosavljevic,et al.  Prototypic sequences for human repetitive DNA , 1992, Journal of Molecular Evolution.

[4]  Ronald Bontrop,et al.  Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence , 1994, Nature Genetics.

[5]  C. Sensen,et al.  Complete DNA sequence of yeast chromosome XI , 1994, Nature.

[6]  D. Sievers,et al.  Self-replication of complementary nucleotide-based oligomers , 1994, Nature.

[7]  K. Nicolaou,et al.  Chemical self-replication of palindromic duplex DNA , 1994, Nature.

[8]  L. Hood,et al.  Striking sequence similarity over almost 100 kilobases of human and mouse T–cell receptor DNA , 1994, Nature Genetics.

[9]  R. Durbin,et al.  2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans , 1994, Nature.

[10]  John M. Hancock,et al.  SIMPLE34: an improved and enhanced implementation for VAX and Sun computers of the SIMPLE algorithm for analysis of clustered repetitive motifs in nucleotide sequences , 1994, Comput. Appl. Biosci..

[11]  Robert I. Richards,et al.  Simple repeat DNA is not replicated simply , 1994, Nature Genetics.

[12]  A. Jeffreys,et al.  Complex gene conversion events in germline mutation at human minisatellites , 1994, Nature Genetics.

[13]  W. Doerfler,et al.  Enzymatic amplification of synthetic oligodeoxyribonucleotides: Implications for triplet repeat expansions in the human genome , 1994, Human mutation.

[14]  Tomas A. Prolla,et al.  Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair , 1993, Nature.

[15]  G. Valle TA‐repeat microsatellites are closely associated with ARS consensus sequences in yeast chromosome III , 1993, Yeast.

[16]  J. Hancock,et al.  Evolution of sequence repetition and gene duplications in the TATA-binding protein TBP (TFIID). , 1993, Nucleic acids research.

[17]  M. Giphart-Gassler,et al.  Genome wide spontaneous mutation in human cells determined by the spectrum of mutations in hprt cDNA genes. , 1993, Mutagenesis.

[18]  A. Milosavljevic,et al.  Identification and characterization of new human medium reiteration frequency repeats. , 1993, Nucleic acids research.

[19]  P. Sharp,et al.  Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. , 1993, Nucleic acids research.

[20]  S T Cole,et al.  Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae , 1993, Molecular microbiology.

[21]  F. Blattner,et al.  Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. , 1992, Science.

[22]  M. J. Bishop,et al.  The UK Human Genome Mapping Project online computing service , 1992, Comput. Appl. Biosci..

[23]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[24]  John M. Hancock,et al.  Evolution of the cetacean mitochondrial D-loop region. , 1991, Molecular biology and evolution.

[25]  John M. Hancock,et al.  'Compensatory slippage' in the evolution of ribosomal RNA genes. , 1990, Nucleic acids research.

[26]  T. Kunkel,et al.  Frameshift errors initiated by nucleotide misincorporation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Tautz,et al.  Comparison of the gap segmentation gene hunchback between Drosophila melanogaster and Drosophila virilis reveals novel modes of evolutionary change. , 1989, The EMBO journal.

[28]  John M. Hancock,et al.  Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs. , 1988, Molecular biology and evolution.

[29]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[31]  D. Tautz,et al.  Cryptic simplicity in DNA is a major source of genetic variation , 1986, Nature.

[32]  Portland Press Ltd Nomenclature Committee for the International Union of Biochemistry (NC-IUB). Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. , 1985, Molecular biology and evolution.

[33]  D. Tautz,et al.  Simple sequences are ubiquitous repetitive components of eukaryotic genomes. , 1984, Nucleic acids research.

[34]  H. K. Jain,et al.  Incidental DNA , 1980, Nature.

[35]  T. Cavalier-smith,et al.  Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. , 1978, Journal of cell science.

[36]  M. Inouye,et al.  Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. , 1966, Cold Spring Harbor symposia on quantitative biology.