Weighted estimates for maximal functions associated with finite type curves in R2

Abstract In this paper we establish weighted estimates for the maximal function associated with the finite type curve in the plane R 2 . We follow an approach used by M. Lacey to obtain sparse bounds for the maximal function. Further, using a different approach we obtain a characterisation of power weights for the weighted L p boundedness of the maximal function. We also obtain analogous results for the lacunary maximal function associated with the finite type curve in the plane R 2 .

[1]  F. Bernicot,et al.  Sharp weighted norm estimates beyond Calderón–Zygmund theory , 2015, 1510.00973.

[2]  Maximal functions associated with flat plane curves with mitigating factors , 2016, Annali di Matematica Pura ed Applicata (1923 -).

[3]  A sparse estimate for multisublinear forms involving vector-valued maximal functions , 2017, 1709.09647.

[4]  A. Moyua,et al.  The spherical maximal operator on radial functions , 2012 .

[5]  M. Lacey Sparse bounds for spherical maximal functions , 2017, Journal d'Analyse Mathématique.

[6]  Jie Yang,et al.  On Lp-boundedness of Fourier Integral Operators , 2021, Potential Analysis.

[7]  A. Iosevich Maximal operators associated to families of flat curves in the plane , 1994 .

[8]  Z. Nieraeth Quantitative estimates and extrapolation for multilinear weight classes , 2018, Mathematische Annalen.

[9]  W. Littman Fourier transforms of surface-carried measures and differentiability of surface averages , 1963 .

[10]  B. Jawerth WEIGHTED INEQUALITIES FOR MAXIMAL OPERATORS: LINEARIZATION, LOCALIZATION AND FACTORIZATION , 1986 .

[11]  R. Strichartz Convolutions with kernels having singularities on a sphere , 1970 .

[12]  C. P. Calderón Lacunary spherical means , 1979 .

[13]  J. García-cuerva,et al.  Weighted estimates for fractional maximal functions related to spherical means , 2002, Bulletin of the Australian Mathematical Society.

[14]  W. Schlag A generalization of Bourgain’s circular maximal theorem , 1997 .

[15]  Sanghyuk Lee,et al.  Endpoint estimates for the circular maximal function , 2002 .

[16]  A. Seeger,et al.  Local smoothing of Fourier integral operators and Carleson-Sjölin estimates , 1993 .

[17]  Wilhelm Schlag,et al.  LOCAL SMOOTHING ESTIMATES RELATED TO THE CIRCULAR MAXIMAL THEOREM , 1997 .

[18]  E. Stein,et al.  Problems in harmonic analysis related to curvature , 1978 .

[19]  A. Seeger,et al.  Wave front sets, local smoothing and Bourgain's circular maximal theorem , 1992 .

[20]  R. Beals boundedness of Fourier integral operators , 1982 .

[21]  D. Frey,et al.  Weak and Strong Type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1$$\end{document}A1–\documentclass[12pt]{minima , 2017, Journal of geometric analysis.

[22]  E. Stein Maximal functions: Spherical means. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Bourgain Averages in the plane over convex curves and maximal operators , 1986 .

[24]  L. Vega,et al.  Spherical Means and Weighted Inequalities , 1996 .

[25]  A. Lerner,et al.  Intuitive dyadic calculus: The basics , 2015, Expositiones Mathematicae.

[26]  M. Kempe,et al.  Estimates for maximal functions associated with hypersurfaces in ℝ3 and related problems of harmonic analysis , 2010 .