A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma.

[1]  H. DeLuca,et al.  Bone Resorbing Activity of Vitamin D Metabolites and Congeners in Vitro: Influence of Hydroxy1 Substituents in the A Ring , 1975 .

[2]  H. DeLuca,et al.  High-pressure liquid chromatography: separation of the metabolites of vitamins D2 and D3 on small-particle silica columns. , 1975, Journal of lipid research.

[3]  H. DeLuca,et al.  The mobilization of bone mineral by 1,25-dihydroxyvitamin D3 in hypophosphatemic rats. , 1975, Endocrinology.

[4]  H. DeLuca,et al.  Isolation and identification of 1,25-dihydroxyvitamin D2. , 1975, Biochemistry.

[5]  M. Haussler,et al.  Specific binding of 1alpha,25-dihydroxycholecalciferol to nuclear components of chick intestine. , 1975, The Journal of biological chemistry.

[6]  A. Norman,et al.  Regulation of 25-hydroxyvitamin D3-1-hydroxylase in vivo. , 1974, The Journal of biological chemistry.

[7]  M. Haussler,et al.  Filter assay for 1alpha, 25-dihydroxyvitamin D3. Utilization of the hormone's target tissue chromatin receptor. , 1974, Biochemistry.

[8]  H. DeLuca,et al.  Role of vitamin D metabolites in phosphate transport of rat intestine. , 1974, The Journal of nutrition.

[9]  M. Haussler,et al.  Radioreceptor Assay for 1α,25-Dihydroxyvitamin D3 , 1974, Science.

[10]  H. DeLuca,et al.  Intestinal Calcium Transport: Stimulation by Low Phosphorus Diets , 1973, Science.

[11]  D. Fraser,et al.  Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. , 1973, Nature: New biology.

[12]  H. DeLuca,et al.  The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. , 1973, Archives of biochemistry and biophysics.

[13]  H. DeLuca,et al.  Rachitogenic activity of dietary strontium. I. Inhibition of intestinal calcium absorption and 1,25-dihydroxycholecalciferol synthesis. , 1972, The Journal of biological chemistry.

[14]  H. DeLuca,et al.  Regulation of metabolism of 25-hydroxycholecalciferol by kidney tissue in vitro by dietary calcium. , 1972, Nature: New biology.

[15]  H. DeLuca,et al.  The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxy vitamin D in nephrectomized rats. , 1972, Endocrinology.

[16]  H. DeLuca,et al.  1,25-Dihydroxycholecalciferol: A Potent Stimulator of Bone Resorption in Tissue Culture , 1972, Science.

[17]  H. DeLuca,et al.  Strontium Induced Rickets: Metabolic Basis , 1971, Science.

[18]  H. DeLuca,et al.  Bone mineral mobilization activity of 1,25-dihydroxycholecalciferol, a metabolite of vitamin D. , 1971, Archives of biochemistry and biophysics.

[19]  H. DeLuca,et al.  Synthesis of (26,27- 3 H)-25-hydroxycholecalciferol. , 1971, Analytical biochemistry.

[20]  H. DeLuca,et al.  Biological activity of 1,25-dihydroxycholecalciferol. , 1971, Biochemistry.

[21]  H. DeLuca,et al.  Vitamin D Metabolism: The Role of Kidney Tissue , 1971, Science.

[22]  A. Norman,et al.  Vitamin D: A Cholecalciferol Metabolite Highly Active in Promoting Intestinal Calcium Transport , 1971, Science.

[23]  D. Fraser,et al.  Unique Biosynthesis by Kidney of a Biologically Active Vitamin D Metabolite , 1970, Nature.

[24]  H. DeLuca,et al.  Metabolites of vitamin D3 and their biologic activity. , 1969, The Journal of nutrition.