Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires

Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming “Candidatus Methanoperedens” archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding OmcZ nanowire-like electron-exporting cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.

[1]  T. Sleutels,et al.  Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea , 2023, bioRxiv.

[2]  E. Egelman,et al.  Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes , 2023, Cell.

[3]  J. Söding,et al.  Fast and accurate protein structure search with Foldseek , 2023, bioRxiv.

[4]  Henrique Pondé de Oliveira Pinto,et al.  GPT-4 Technical Report , 2023, 2303.08774.

[5]  N. Kyrpides,et al.  You can move, but you can’t hide: identification of mobile genetic elements with geNomad , 2023, bioRxiv.

[6]  N. Malvankar,et al.  Structure of Geobacter cytochrome OmcZ identifies mechanism of nanowire assembly and conductivity , 2023, Nature Microbiology.

[7]  B. Woodcroft,et al.  Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle , 2023, Nature Microbiology.

[8]  J. Banfield,et al.  Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins , 2023, PLoS biology.

[9]  K. Williams,et al.  Borgs are giant genetic elements with potential to expand metabolic capacity , 2022, Nature.

[10]  K. Corbett,et al.  Structure and activity of a bacterial defense‐associated 3′‐5′ exonuclease , 2022, Protein science : a publication of the Protein Society.

[11]  Petar I. Penev,et al.  A widespread group of large plasmids in methanotrophic Methanoperedens archaea , 2022, bioRxiv.

[12]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[13]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[14]  Elizabeth K. Eder,et al.  Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment , 2021, Proceedings of the National Academy of Sciences.

[15]  Takashi Okura,et al.  Cell-to-Cell Transmission of Turkey Herpesvirus in Chicken Embryo Cells via Tunneling Nanotubes , 2021, Avian Diseases.

[16]  J. Aury,et al.  Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads , 2020, bioRxiv.

[17]  N. Kyrpides,et al.  CheckV assesses the quality and completeness of metagenome-assembled viral genomes , 2020, Nature Biotechnology.

[18]  Cameron L.M. Gilchrist,et al.  clinker & clustermap.js: Automatic generation of gene cluster comparison figures , 2020, bioRxiv.

[19]  T. Varga,et al.  Electric field stimulates production of highly conductive microbial OmcZ nanowires , 2020, Nature Chemical Biology.

[20]  M. Sullivan,et al.  DRAM for distilling microbial metabolism to automate the curation of microbiome function , 2020, bioRxiv.

[21]  K. Lewis,et al.  Ureadepsipeptides as ClpP Activators. , 2019, ACS infectious diseases.

[22]  P. Pevzner,et al.  metaFlye: scalable long-read metagenome assembly using repeat graphs , 2019, Nature Methods.

[23]  D. Charro,et al.  Structural basis for assembly of vertical single β-barrel viruses , 2019, Nature Communications.

[24]  S. Wolin,et al.  Ro60 and Y RNAs: structure, functions, and roles in autoimmunity , 2019, Critical reviews in biochemistry and molecular biology.

[25]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[26]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[27]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[28]  R. Szczepaniak,et al.  The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus , 2017, Journal of Virology.

[29]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[30]  Ryan R. Wick,et al.  Completing bacterial genome assemblies with multiplex MinION sequencing , 2017, bioRxiv.

[31]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[32]  T. Schulz,et al.  Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen: Replicating and Shielding Viral DNA during Viral Persistence , 2017, Journal of Virology.

[33]  I. Ahel,et al.  The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA , 2016, Molecular cell.

[34]  Brian C. Thomas,et al.  Measurement of bacterial replication rates in microbial communities , 2016, Nature Biotechnology.

[35]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[36]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[37]  H. O. D. op den Camp,et al.  A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea , 2015, Front. Microbiol..

[38]  L. Aravind,et al.  Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling , 2015, Nucleic acids research.

[39]  A. Boetius,et al.  Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria , 2015, Nature.

[40]  Brian C. Thomas,et al.  Unusual biology across a group comprising more than 15% of domain Bacteria , 2015, Nature.

[41]  Raven H. Huang,et al.  Reconstitution and structure of a bacterial Pnkp1–Rnl–Hen1 RNA repair complex , 2015, Nature Communications.

[42]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[43]  Christopher J. Oldfield,et al.  Classification of Intrinsically Disordered Regions and Proteins , 2014, Chemical reviews.

[44]  Brian Bushnell,et al.  BBMap: A Fast, Accurate, Splice-Aware Aligner , 2014 .

[45]  Shihu Hu,et al.  Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage , 2013, Nature.

[46]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[47]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[48]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[49]  S. Weller,et al.  Herpes simplex viruses: mechanisms of DNA replication. , 2012, Cold Spring Harbor perspectives in biology.

[50]  G. Rákhely,et al.  Relationship between PHA and hydrogen metabolism in the purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS , 2012 .

[51]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[52]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[53]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[54]  Colin R. Parrish,et al.  Presence and role of cytosine methylation in DNA viruses of animals , 2008, Nucleic acids research.

[55]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[56]  M. Dyall-Smith,et al.  Constituents of SH1, a Novel Lipid-Containing Virus Infecting the Halophilic Euryarchaeon Haloarcula hispanica , 2005, Journal of Virology.

[57]  Yuan-ming Luo,et al.  Sulfolobus tengchongensis Spindle-Shaped Virus STSV1: Virus-Host Interactions and Genomic Features , 2005, Journal of Virology.

[58]  Johannes Söding,et al.  Protein homology detection by HMM?CHMM comparison , 2005, Bioinform..

[59]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[60]  J. Christopher Fromme,et al.  Structure of a trapped endonuclease III–DNA covalent intermediate , 2003, The EMBO journal.

[61]  R. Myers,et al.  Bacteriophage SPP1 Chu Is an Alkaline Exonuclease in the SynExo Family of Viral Two-Component Recombinases , 2003, Journal of Bacteriology.

[62]  P. Sung,et al.  DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[64]  R. Levitz,et al.  Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. , 1987, The EMBO journal.

[65]  W. Delano The PyMOL Molecular Graphics System , 2002 .