Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

BackgroundIn Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated.ResultsThe pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2). Acid also up-regulated fimbriae (fimAC), periplasmic chaperones (hdeAB), cyclopropane fatty acid synthase (cfa), and the "constitutive" Na+/H+ antiporter (nhaB). Base up-regulated core genes for maltodextrin transport (lamB, mal), ATP synthase (atp), and DNA repair (recA, mutL). Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh) and hydrogenases (hya, hyb, hyc, hyf, hyp). A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps). Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl), and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL), but down-regulated penicillin-binding proteins (dacACD, mreBC). Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC).ConclusionpH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nhaB. Under oxygen limitation, however, pH regulation is reversed for genes encoding electron transport components and hydrogenases. Extreme-acid resistance requires yagU and hydrogenase production. Ribosome synthesis is down-regulated at low pH under oxygen limitation, possibly due to the restricted energy yield of catabolism. Under oxygen limitation, pH regulates metabolism and transport so as to maximize alternative catabolic options while minimizing acidification or alkalinization of the cytoplasm.

[1]  R. Titball,et al.  The pH 6 Antigen of Yersinia pestisBinds to β1-Linked Galactosyl Residues in Glycosphingolipids , 1998, Infection and Immunity.

[2]  G. Macfarlane,et al.  Short chain fatty acids in human large intestine, portal, hepatic and venous blood. , 1987, Gut.

[3]  K. Young,et al.  AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli , 1997, Journal of bacteriology.

[4]  R M Macnab,et al.  pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Shanmugam,et al.  N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. , 2001, Microbiology.

[6]  P. King,et al.  Response of hya Expression to External pH in Escherichia coli , 1999, Journal of bacteriology.

[7]  D. Barstad,et al.  A glutamate-dependent acid resistance gene in Escherichia coli , 1996, Journal of bacteriology.

[8]  Pierre Baldi,et al.  Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. , 2005, The Journal of biological chemistry.

[9]  D. Georgellis,et al.  Regulatory Circuitry of the CsrA/CsrB and BarA/UvrY Systems of Escherichia coli , 2002, Journal of bacteriology.

[10]  R. Maier,et al.  Molecular Hydrogen as an Energy Source for Helicobacter pylori , 2002, Science.

[11]  G. Storz,et al.  GadY, a Small-RNA Regulator of Acid Response Genes in Escherichia coli , 2004, Journal of bacteriology.

[12]  S. Park,et al.  Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate , 1996, Journal of bacteriology.

[13]  P. Pomposiello,et al.  Genome-Wide Transcriptional Profiling of theEscherichia coli Responses to Superoxide Stress and Sodium Salicylate , 2001, Journal of bacteriology.

[14]  Joan L. Slonczewski,et al.  Acid- and Base-Induced Proteins during Aerobic and Anaerobic Growth of Escherichia coli Revealed by Two-Dimensional Gel Electrophoresis , 1999, Journal of bacteriology.

[15]  A. Böck,et al.  Mechanism of regulation of the formate‐hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon , 1991, Molecular microbiology.

[16]  J. Foster,et al.  YjdE (AdiC) Is the Arginine:Agmatine Antiporter Essential for Arginine-Dependent Acid Resistance in Escherichia coli , 2003, Journal of bacteriology.

[17]  S. Calderwood,et al.  pepA, a Gene Mediating pH Regulation of Virulence Genes in Vibrio cholerae , 2001, Journal of bacteriology.

[18]  Cheng Li,et al.  DNA-Chip Analyzer (dChip) , 2003 .

[19]  S. McAteer,et al.  Why Is Carbonic Anhydrase Essential to Escherichia coli? , 2003, Journal of bacteriology.

[20]  F. Neidhardt,et al.  Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage , 1993, Journal of bacteriology.

[21]  J. Dressman,et al.  Upper Gastrointestinal (GI) pH in Young, Healthy Men and Women , 1990, Pharmaceutical Research.

[22]  Yuliya N. Yoncheva,et al.  pH-Dependent Expression of Periplasmic Proteins and Amino Acid Catabolism in Escherichia coli , 2002, Journal of bacteriology.

[23]  T. Silhavy,et al.  Signal Detection and Target Gene Induction by the CpxRA Two-Component System , 2003, Journal of bacteriology.

[24]  Pierre Baldi,et al.  Global Gene Expression Profiling in Escherichia coliK12 , 2002, The Journal of Biological Chemistry.

[25]  J. Slonczewski,et al.  Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH , 1994, Journal of bacteriology.

[26]  George M Church,et al.  Regulatory network of acid resistance genes in Escherichia coli , 2003, Molecular microbiology.

[27]  Johan Nilsson,et al.  Experimentally based topology models for E. coli inner membrane proteins , 2004, Protein science : a publication of the Protein Society.

[28]  G. W. Hatfield,et al.  Global Gene Expression Profiling in Escherichia coli K12 , 2003, Journal of Biological Chemistry.

[29]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[30]  O. Lewinson,et al.  Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study , 2005, Nature Reviews Microbiology.

[31]  T. Conway,et al.  Gene Expression Profiling of the pH Response in Escherichia coli , 2002, Journal of bacteriology.

[32]  S. Finkel,et al.  The Growth Advantage in Stationary-Phase PhenotypeConferred by rpoS Mutations Is Dependent on the pH andNutrientEnvironment , 2003, Journal of bacteriology.

[33]  Jeremy D. Glasner,et al.  Systematic Mutagenesis of the Escherichia coli Genome , 2004, Journal of bacteriology.

[34]  A. Böck,et al.  Anaerobic Formate and Hydrogen Metabolism. , 2004, EcoSal Plus.

[35]  S. Altuvia Regulatory Small RNAs: the Key to Coordinating Global Regulatory Circuits , 2004, Journal of bacteriology.

[36]  John W. Foster,et al.  Collaborative Regulation of Escherichia coli Glutamate-Dependent Acid Resistance by Two AraC-Like Regulators, GadX and GadW (YhiW) , 2002, Journal of bacteriology.

[37]  Michael I. Jordan,et al.  Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Paul S. Cohen,et al.  Genes of the GadX-GadW Regulon in Escherichia coli , 2003, Journal of bacteriology.

[39]  G. Bennett,et al.  Construction of lac fusions to the inducible arginine‐and lysine decarboxylase genes of Escherichia coli K12 , 1989, Molecular microbiology.

[40]  W. Boos,et al.  Hexose/Pentose and Hexitol/Pentitol Metabolism , 2005, EcoSal Plus.

[41]  E. Padan,et al.  Induction of SOS functions by alkaline intracellular pH in Escherichia coli , 1986, Journal of bacteriology.

[42]  J. Foster,et al.  Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. , 2001, Microbiology.

[43]  J. Slonczewski,et al.  Polyamine stress at high pH in Escherichia coli K-12 , 2005, BMC Microbiology.

[44]  J. Hardcastle,et al.  Measurement of gastrointestinal pH profiles in normal ambulant human subjects. , 1988, Gut.

[45]  Yung-Sheng Chang,et al.  Regulation of the Hydrogenase-4 Operon of Escherichia coli by the σ54-Dependent Transcriptional Activators FhlA and HyfR , 2002, Journal of bacteriology.

[46]  Hiroshi Kobayashi,et al.  Expression of chaA, a sodium ion extrusion system of Escherichia coli, is regulated by osmolarity and pH. , 2002, Biochimica et biophysica acta.

[47]  F. Blattner,et al.  Global Transcriptional Programs Reveal a Carbon Source Foraging Strategy by Escherichia coli*♦ , 2005, Journal of Biological Chemistry.

[48]  K. Bagramyan,et al.  Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate , 2007, Cell Biochemistry and Biophysics.

[49]  William T. Self,et al.  Expression and Regulation of a Silent Operon, hyf, Coding for Hydrogenase 4 Isoenzyme in Escherichia coli , 2004, Journal of bacteriology.

[50]  A. Yamaguchi,et al.  Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli , 2001, Journal of bacteriology.

[51]  Michael I. Jordan,et al.  Sulfur and Nitrogen Limitation in Escherichia coli K-12: Specific Homeostatic Responses , 2005, Journal of bacteriology.

[52]  O. Lewinson,et al.  Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  External-pH-Dependent Expression of the Maltose Regulon and ompF Gene in Escherichia coli Is Affected by the Level of Glycerol Kinase, Encoded byglpK , 2001, Journal of bacteriology.

[54]  D. Siegele,et al.  Global Analysis of Escherichia coli Gene Expression during the Acetate-Induced Acid Tolerance Response , 2001, Journal of bacteriology.

[55]  J. Russell,et al.  The effects of fermentation acids on bacterial growth. , 1998, Advances in microbial physiology.

[56]  Ka Yee Yeung,et al.  Principal component analysis for clustering gene expression data , 2001, Bioinform..

[57]  R. G. Kroll,et al.  The effect of food preservatives on pH homeostasis in Escherichia coli. , 1984, Journal of general microbiology.

[58]  August Böck,et al.  HypF, a Carbamoyl Phosphate-converting Enzyme Involved in [NiFe] Hydrogenase Maturation* , 2002, The Journal of Biological Chemistry.

[59]  K. Bagramyan,et al.  The roles of hydrogenases 3 and 4, and the F0F1‐ATPase, in H2 production by Escherichia coli at alkaline and acidic pH , 2002, FEBS letters.

[60]  M. Radmacher,et al.  pH Regulates Genes for Flagellar Motility, Catabolism, and Oxidative Stress in Escherichia coli K-12 , 2005, Journal of bacteriology.

[61]  J. Slonczewski,et al.  pH-Dependent Catabolic Protein Expression during Anaerobic Growth of Escherichia coli K-12 , 2004, Journal of bacteriology.

[62]  George-John E. Nychas,et al.  Development and Evaluation of a Model Predicting the Survival of Escherichia coli O157:H7 NCTC 12900 in Homemade Eggplant Salad at Various Temperatures, pHs, and Oregano Essential Oil Concentrations , 2000, Applied and Environmental Microbiology.

[63]  A. Camilli,et al.  Acid tolerance of gastrointestinal pathogens. , 2002, Current opinion in microbiology.

[64]  A. Böck,et al.  Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli , 1991, Molecular microbiology.

[65]  Robert A. LaRossa,et al.  DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide , 2001, Journal of bacteriology.

[66]  E. Wit Design and Analysis of DNA Microarray Investigations , 2004, Human Genomics.

[67]  H. Sahm,et al.  DNA Microarray Analyses of the Long-Term Adaptive Response of Escherichia coli to Acetate and Propionate , 2003, Applied and Environmental Microbiology.

[68]  V. Wendisch,et al.  Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σS-Dependent Genes, Promoters, and Sigma Factor Selectivity , 2005, Journal of bacteriology.

[69]  A. Yamaguchi,et al.  EvgA of the Two-Component Signal Transduction System Modulates Production of the YhiUV Multidrug Transporter in Escherichia coli , 2002, Journal of bacteriology.

[70]  G. Bennett,et al.  Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. , 1996, Microbiology.

[71]  H. Schellhorn,et al.  Regulation of katF and katE in Escherichia coli K-12 by weak acids , 1992, Journal of bacteriology.

[72]  C. Li,et al.  Analyzing high‐density oligonucleotide gene expression array data , 2001, Journal of cellular biochemistry.

[73]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[74]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Jessica L. Rowe,et al.  Complex Transcriptional Control Links NikABCDE-Dependent Nickel Transport with Hydrogenase Expression in Escherichia coli , 2005, Journal of bacteriology.

[76]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[77]  M. Neely,et al.  Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon , 1994, Journal of bacteriology.

[78]  J. Foster,et al.  Ch. 96: pH-Regulated Genes and Survival at Extreme pH , 1987 .

[79]  M. Quail,et al.  A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. , 1997, Microbiology.

[80]  G. von Heijne,et al.  Protein Complexes of the Escherichia coli Cell Envelope* , 2005, Journal of Biological Chemistry.

[81]  K. Shanmugam,et al.  Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism , 1985, Journal of bacteriology.

[82]  J. Slonczewski,et al.  Alkaline induction of a novel gene locus, alx, in Escherichia coli , 1990, Journal of bacteriology.

[83]  E. Padan,et al.  Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli. , 1993, The Journal of biological chemistry.

[84]  N. Majdalani,et al.  Regulatory roles for small RNAs in bacteria. , 2003, Current opinion in microbiology.

[85]  Yuliya Yoncheva,et al.  Acetate and Formate Stress: Opposite Responses in the Proteome of Escherichia coli , 2001, Journal of bacteriology.

[86]  K. Gajiwala,et al.  HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. , 2000, Journal of molecular biology.

[87]  S. Broitman,et al.  Influence of gastric acidity on bacterial and parasitic enteric infections. A perspective. , 1973, Annals of internal medicine.

[88]  E. Padan,et al.  Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. , 1991, The Journal of biological chemistry.

[89]  M. Mandrand-Berthelot,et al.  Catabolism of Hexuronides, Hexuronates, Aldonates, and Aldarates. , 2004, EcoSal Plus.

[90]  T. Silhavy,et al.  Escherichia coli Starvation Diets: Essential Nutrients Weigh in Distinctly , 2005, Journal of bacteriology.

[91]  A. Yamaguchi,et al.  Indole induces the expression of multidrug exporter genes in Escherichia coli , 2004, Molecular microbiology.

[92]  P. Vignais,et al.  Molecular biology of microbial hydrogenases. , 2004, Current issues in molecular biology.

[93]  A. Böck,et al.  Network of Hydrogenase Maturation in Escherichia coli: Role of Accessory Proteins HypA and HybF , 2002, Journal of bacteriology.

[94]  Christina Cramer,et al.  Antibiotic Susceptibility Profiles ofEscherichia coli Strains Lacking Multidrug Efflux Pump Genes , 2001, Antimicrobial Agents and Chemotherapy.

[95]  Akira Ishihama,et al.  Transcriptional response of Escherichia coli to external copper , 2005, Molecular microbiology.