The statistical sleuth : a course in methods of data analysis
暂无分享,去创建一个
1. Drawing Statistical Conclusions. 2. Inference Using t-Distributions. 3. A Closer Look at Assumptions. 4. Alternatives to the t-Tools. 5. Comparisons among Several Samples. 6. Linear Combinations and Multiple Comparisons of Means. 7. Simple Linear Regression: A Model for the Mean. 8. A Closer Look at Assumptions for Simple Linear Regression. 9. Multiple Regression. 10. Inferential Tools for Multiple Regression. 11. Model Checking and Refinement. 12. Strategies for Variable Selection. 13. The Analysis of Variance for Two-Way Classifications. 14. Multifactor Studies Without Replication. 15. Adjustment for Serial Correlation. 16. Repeated Measures and Other Multivariate Responses. 17. Exploratory Tools for Summarizing Multivariate Responses. 18. Comparisons of Proportions or Odds. 19. More Tools for Tables of Counts. 20. Logistics Regression for Binary Response Variables. 21. Logistic Regression for Binomial Counts. 22. Log-Linear Regression for Poisson Counts. 23. Elements of Research Design. 24. Factorial Treatment Arrangements and Blocking Designs. Appendix A. Tables. Appendix B. References. Bibliography. Index.