Blow-up of solutions to semilinear wave equations with a time-dependent strong damping
暂无分享,去创建一个
[1] A. Fino. Finite Time Blow-Up for Wave Equations with Strong Damping in an Exterior Domain , 2018, Mediterranean Journal of Mathematics.
[2] Yuta Wakasugi. On the diffusive structure for the damped wave equation with variable coefficients , 2014 .
[3] S. Lucente,et al. Nonlinear Liouville theorems for Grushin and Tricomi operators , 2003 .
[4] Qi S. Zhang,et al. Finite time blow up for critical wave equations in high dimensions , 2004, math/0404055.
[5] Walter A. Strauss,et al. Nonlinear scattering theory at low energy , 1981 .
[6] Yi Zhou. Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions* , 2007 .
[7] F. John. Blow-up of solutions of nonlinear wave equations in three space dimensions , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[8] M. Kirane,et al. Qualitative properties of solutions to a time-space fractional evolution equation , 2012 .
[9] Qi S. Zhang. A blow-up result for a nonlinear wave equation with damping: The critical case , 2001 .
[10] G. Karch,et al. Decay of mass for nonlinear equation with fractional Laplacian , 2008, 0812.4977.
[11] Michael Reissig,et al. Semilinear structural damped waves , 2012, 1209.3204.
[12] Société de mathématiques appliquées et industrielles,et al. Introduction aux problèmes d'évolution semi-linéaires , 1990 .