Dimension reduction in functional regression with applications

Two dimensional reduction regression methods to predict a scalar response from a discretized sample path of a continuous time covariate process are presented. The methods take into account the functional nature of the predictor and are both based on appropriate wavelet decompositions. Using such decompositions, prediction methods are devised that are similar to minimum average variance estimation (MAVE) or functional sliced inverse regression (FSIR). Their practical implementation is described, together with their application both to simulated and on real data analyzing three calibration examples of near infrared spectra.

[1]  P. J. Brown,et al.  Calibration with Many Variables , 1993 .

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Denis Bosq,et al.  Nonparametric estimation and prediction for continuous time processes , 1997 .

[4]  Albert Cohen,et al.  Nonlinear Approximation of Random Functions , 1997, SIAM J. Appl. Math..

[5]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[6]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[7]  Denis Bosq,et al.  Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes , 1991 .

[8]  L. Ferre,et al.  Un modèle semi-paramétrique pour variables aléatoires hilbertiennes , 2001 .

[9]  Anestis Antoniadis,et al.  Wavelet regression for random or irregular design , 1998 .

[10]  T. Fearn,et al.  Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem , 2001 .

[11]  K. Fang,et al.  Asymptotics for kernel estimate of sliced inverse regression , 1996 .

[12]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[13]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[14]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis, Volume 9: Gabor and Wavelet Transforms, with an Implementation in S , 1998 .

[15]  J. Ramsay,et al.  Principal components analysis of sampled functions , 1986 .

[16]  S. Efroimovich Sequential Nonparametric Estimation of a Density , 1990 .

[17]  R. Cook Save: a method for dimension reduction and graphics in regression , 2000 .

[18]  Tom Fearn,et al.  Partial Least Squares Regression on Smooth Factors , 1996 .

[19]  T. Fearn,et al.  Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs , 1984 .

[20]  J. Neveu,et al.  Processus aléatoires gaussiens , 1968 .

[21]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[22]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[23]  J. Ramsay Some Statistical Approaches to Multidimensional Scaling Data , 1982 .

[24]  P. Sarda,et al.  Functional linear model , 1999 .

[25]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[26]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[27]  B. Marx,et al.  Multivariate calibration stability: a comparison of methods , 2002 .

[28]  R. V. Sachs,et al.  Wavelets in time-series analysis , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Hans Henrik Thodberg,et al.  A review of Bayesian neural networks with an application to near infrared spectroscopy , 1996, IEEE Trans. Neural Networks.

[30]  Jérôme Saracco,et al.  An asymptotic theory for sliced inverse regression , 1997 .

[31]  L. Ferré Determining the Dimension in Sliced Inverse Regression and Related Methods , 1998 .

[32]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[33]  Qiwei Yao,et al.  On subset selection in non-parametric stochastic regression , 1994 .

[34]  Frédéric Ferraty,et al.  The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..

[35]  B. K. Alsberg Representation of spectra by continuous functions , 1993 .

[36]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Howell Tong,et al.  A Theory of Wavelet Representation and Decomposition for a General Stochastic Process , 1996 .

[38]  Maliha S. Nash,et al.  Practical Time-Frequency Analysis, Gabor and Wavelet Transforms With an Implementation in S , 2002, Technometrics.

[39]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[40]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[41]  A K Smilde,et al.  Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models. , 1998, Analytical chemistry.