Excitable Networks: nonequilibrium Criticality and Optimum Topology

Excitable media may be modeled as simple extensions of the Amari–Hopfield network with dynamic attractors. Some nodes chosen at random remain temporarily quiet, and some of the edges are switched off to adjust the network connectivity, while the weights of the other edges vary with activity. We conclude on the optimum wiring topology and describe nonequilibrium phases and criticality at the edge of irregular behavior.

[1]  Joaquín J. Torres,et al.  Chaotic hopping between attractors in neural networks , 2006, Neural Networks.

[2]  Werner Lutzenberger,et al.  Is there chaos in the brain? , 1996, Behavioral and Brain Sciences.

[3]  Joaquín J. Torres,et al.  Instabilities in attractor networks with fast synaptic fluctuations and partial updating of the neurons activity , 2008, Neural Networks.

[4]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[5]  Shun-ichi Amari,et al.  Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements , 1972, IEEE Transactions on Computers.

[6]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[7]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[8]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[9]  R. Dickman,et al.  Nonequilibrium Phase Transitions in Lattice Models , 1999 .

[10]  Joaquín J. Torres,et al.  Influence of topology on the performance of a neural network , 2004, Neurocomputing.

[11]  Samuel Johnson,et al.  Functional optimization in complex excitable networks , 2008, 0805.1309.

[12]  R. Segev,et al.  How silent is the brain: is there a “dark matter” problem in neuroscience? , 2006, Journal of Comparative Physiology A.

[13]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[14]  Hilbert J. Kappen,et al.  Associative Memory with Dynamic Synapses , 2002, Neural Computation.

[15]  Kazuto Nakada,et al.  A General Model for Food Web Structure , 2008 .

[16]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[17]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Joaquín J. Torres,et al.  MODELING IONIC DIFFUSION IN MAGNETIC SYSTEMS , 1998 .

[19]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[20]  G. Laurent,et al.  Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection Neurons , 2005, Neuron.

[21]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[22]  J. J. Torres,et al.  Complex behavior in a network with time-dependent connections and silent nodes , 2007, 0710.3320.

[23]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[24]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[26]  Zoltán Toroczkai,et al.  Suppressing Roughness of Virtual Times in Parallel Discrete-Event Simulations , 2003, Science.

[27]  Mauro Copelli,et al.  Dynamic range of hypercubic stochastic excitable media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.