Ultrasound‐assisted facile synthesis of Boron‐Heck‐coupled sclareol analogues as potential antibacterial agents against Staphylococcus aureus

To evaluate the antimicrobial capability of sclareol and its derivatives against Staphylococcus aureus and its Methicillin‐resistant strain (MRSA).

[1]  R. Ghimire,et al.  Methicillin-resistant Staphylococcus aureus in Nepal: A systematic review and meta-analysis. , 2020, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[2]  Jian Sun,et al.  Synergistic Potential of Antimicrobial Combinations Against Methicillin-Resistant Staphylococcus aureus , 2020, Frontiers in Microbiology.

[3]  Juan Wang,et al.  Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus , 2020, Frontiers in Cellular and Infection Microbiology.

[4]  A. Makris,et al.  Μicropropagation and cultivation of Salvia sclarea for essential oil and sclareol production in northern Greece , 2020, In Vitro Cellular & Developmental Biology - Plant.

[5]  Yedukondalu Nalli,et al.  Antibacterial potential of Juglomycin A isolated from Streptomyces achromogenes, an endophyte of Crocus sativus Linn , 2019, Journal of applied microbiology.

[6]  A. Stoyanova,et al.  Terpenoids in the Essential Oil and Concentrated Aromatic Products Obtained from Nicotiana glutinosa L. Leaves , 2019, Molecules.

[7]  Olívia R. Pereira,et al.  Phytochemical Composition and Bioactive Effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana Aqueous Extracts , 2019, Molecules.

[8]  Jianzhong Shen,et al.  Antibacterial Effect and Mode of Action of Flavonoids From Licorice Against Methicillin-Resistant Staphylococcus aureus , 2019, Front. Microbiol..

[9]  Huifeng Zhu,et al.  Staphyloxanthin: a potential target for antivirulence therapy , 2019, Infection and drug resistance.

[10]  M. Beckmann,et al.  Antischistosomal Properties of Sclareol and Its Heck-Coupled Derivatives: Design, Synthesis, Biological Evaluation, and Untargeted Metabolomics. , 2019, ACS infectious diseases.

[11]  Jiabin Li,et al.  In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of Staphylococcus aureus , 2018, Infection and drug resistance.

[12]  M. Chikindas,et al.  Gemini Cationic Amphiphiles Control Biofilm Formation by Bacterial Vaginosis Pathogens , 2017, Antimicrobial Agents and Chemotherapy.

[13]  Yedukondalu Nalli,et al.  Antimicrobial Potential of Thiodiketopiperazine Derivatives Produced by Phoma sp., an Endophyte of Glycyrrhiza glabra Linn. , 2016, Microbial Ecology.

[14]  Tae Yeong Kim,et al.  Potential Strategies to Combat Antimicrobial Resistance , 2016 .

[15]  Noel Southall,et al.  Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria , 2016, Emerging microbes & infections.

[16]  N. van der Mee-Marquet Whole-Genome Sequencing Analysis: An Essential Tool for Shedding Light on the Obscure Evolution of Staphylococcus aureus USA300. , 2016, The Journal of infectious diseases.

[17]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[18]  K. Bhat,et al.  Hemisynthesis of a naturally occurring clinically significant antitumor arglabin from ludartin , 2015 .

[19]  C. L. Ventola The antibiotic resistance crisis: part 1: causes and threats. , 2015, P & T : a peer-reviewed journal for formulary management.

[20]  Hyun Seob Cho,et al.  Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities , 2015, Biofouling.

[21]  R. Vishwakarma,et al.  Diversity, Molecular Phylogeny, and Bioactive Potential of Fungal Endophytes Associated with the Himalayan Blue Pine (Pinus wallichiana) , 2014, Microbial Ecology.

[22]  S. A. Tasduq,et al.  Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Artemisia amygdalina Decne. , 2013, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[23]  V. Nizet,et al.  Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. , 2009, Journal of medicinal chemistry.

[24]  A. Peschel,et al.  Staphyloxanthin Plays a Role in the Fitness of Staphylococcus aureus and Its Ability To Cope with Oxidative Stress , 2006, Infection and Immunity.

[25]  G. Saunders Methicillin resistant Staphylococcus aureus. , 2006, The West Indian medical journal.

[26]  H. Hosseinzadeh,et al.  The pharmacological effects of Salvia species on the central nervous system , 2006, Phytotherapy research : PTR.

[27]  K. Alevizopoulos,et al.  Labd-14-ene-8,13-diol (sclareol) induces cell cycle arrest and apoptosis in human breast cancer cells and enhances the activity of anticancer drugs. , 2006, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[28]  V. Nizet,et al.  Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity , 2005, The Journal of experimental medicine.

[29]  F. Odds,et al.  Synergy, antagonism, and what the chequerboard puts between them. , 2003, The Journal of antimicrobial chemotherapy.

[30]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .

[31]  C. Juliano,et al.  Chemical Composition and Antimicrobial Action of the Essential Oils of Salvia desoleana and S. sclarea , 1999, Planta medica.

[32]  P. Watnick,et al.  Genetic approaches to study of biofilms. , 1999, Methods in enzymology.

[33]  J. Eloff A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria , 1998, Planta medica.

[34]  J. L. Montagne,et al.  Emerging infectious diseases. , 1994, The Journal of infectious diseases.

[35]  W. Craig,et al.  Post-antibiotic effects in experimental infection models: relationship to in-vitro phenomena and to treatment of infections in man. , 1993, The Journal of antimicrobial chemotherapy.

[36]  R. Waibel,et al.  Diterpenes from Gnaphalium pellitum and Gnaphalium graveolens , 1992 .

[37]  J. Waitz Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically , 1990 .

[38]  L. Amaral,et al.  The post-antibiotic effect defined by bacterial morphology. , 1989, The Journal of antimicrobial chemotherapy.

[39]  T. Mabry,et al.  Antibacterial activity studies of flavonoids from Salvia palaestina. , 1983, Journal of natural products.

[40]  W. Craig,et al.  Growth kinetics of respiratory pathogens after short exposures to ampicillin and erythromycin in vitro. , 1981, The Journal of antimicrobial chemotherapy.

[41]  D. Rubin,et al.  Methicillin resistant staphylococci. , 1971, JAMA.