MHD surrogate model for convection in electromagnetically levitated molten metal droplets processed using the ISS-EML facility

[1]  D. Matson,et al.  Surrogate model for convective flow inside electromagnetically levitated molten droplet using magnetohydrodynamic simulation and feature analysis , 2019, International Journal of Heat and Mass Transfer.

[2]  D. Matson,et al.  Numerical representations for flow velocity and shear rate inside electromagnetically levitated droplets in microgravity , 2019, npj Microgravity.

[3]  D. Matson Retained free energy as a driving force for phase transformation during rapid solidification of stainless steel alloys in microgravity , 2018, npj Microgravity.

[4]  D. Matson,et al.  Preliminary Experiments Using Electromagnetic Levitation On the International Space Station , 2016 .

[5]  Stephan Schneider,et al.  The Electro-Magnetic Levitator (EML) On Board the ISS - An Overview and Outlook , 2015 .

[6]  Cheolmin Park,et al.  Uncertainty evaluation for density measurements of molten Ni, Zr, Nb and Hf by using a containerless method , 2015 .

[7]  D. Matson,et al.  Numerical Prediction of the Accessible Convection Range for an Electromagnetically Levitated Fe50Co50 Droplet in Space , 2015, Metallurgical and Materials Transactions B.

[8]  D. Matson,et al.  Magnetohydrodynamic Modeling and Experimental Validation of Convection Inside Electromagnetically Levitated Co-Cu Droplets , 2014, Metallurgical and Materials Transactions B.

[9]  D. Matson,et al.  Characterization of Fluid Flow Inside Electromagnetically‐Levitated Molten Iron‐Cobalt Droplets for ISS Experiment , 2013 .

[10]  B. Hallstedt,et al.  Density and thermal expansion of liquid Al–Si alloys , 2004, Journal of Materials Science.

[11]  G. Pottlacher High Temperature Thermophysical Properties of 22 Pure Metals , 2010 .

[12]  J. R. Rogers,et al.  Containerless Measurements of Thermophysical Properties of Zr54Ti8Cu20Al10Ni8 , 2006, Annals of the New York Academy of Sciences.

[13]  Alaina B. Hanlon,et al.  Microgravity Experiments on the Effect of Internal Flow on Solidification of Fe‐Cr‐Ni Stainless Steels , 2006, Annals of the New York Academy of Sciences.

[14]  R. Guthrie,et al.  Accurate predictions for the viscosities of several liquid transition metals, plus barium and strontium , 2006 .

[15]  J. R. Rogers,et al.  Nonlinearities in the undercooled properties of Ti39.5Zr39.5Ni21 , 2006 .

[16]  R. Bradshaw Automatic containerless measurements of thermophysical properties of quasicrystal forming melts , 2006 .

[17]  S. Berry,et al.  Surface Oscillations of an Electromagnetically Levitated Droplet , 2005 .

[18]  R. Hyers Fluid flow effects in levitated droplets , 2005 .

[19]  S. Yoda,et al.  Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator , 2005 .

[20]  J. Brillo,et al.  Density and Thermal Expansion of Liquid Au-Cu Alloys , 2004 .

[21]  J. R. Rogers,et al.  Convection in Containerless Processing , 2004, Annals of the New York Academy of Sciences.

[22]  J. R. Rogers,et al.  Contrasting Electrostatic and Electromagnetic Levitation Experimental Results for Transformation Kinetics of Steel Alloys , 2004, Annals of the New York Academy of Sciences.

[23]  G. Trápaga,et al.  Laminar-turbulent transition in an electromagnetically levitated droplet , 2003 .

[24]  S. Yoda,et al.  Non-Contact Measurements of Surface Tension and Viscosity of Niobium, Zirconium, and Titanium Using an Electrostatic Levitation Furnace , 2002 .

[25]  W. Rhim,et al.  Thermophysical properties of zirconium at high temperature , 1999 .

[26]  H. Bauer,et al.  Marangoni-convection in a spherical liquid system , 1987 .

[27]  J. Szekely,et al.  The electromagnetic force field, fluid flow field, and temperature profiles in levitated metal droplets , 1983 .