Constraint-Handling with Support Vector Decoders

A comparably new application for support vector machines is their use for meta-modeling the feasible region in constrained optimization problems. Applications have already been developed to optimization problems from the smart grid domain. Still, the problem of a standardized integration of such models into (evolutionary) optimization algorithms was as yet unsolved. We present a new decoder approach that constructs a mapping from the unit hyper cube to the feasible region from the learned support vector model. Thus, constrained problems are transferred into unconstrained ones by space mapping for easier search. We present result from artificial test cases as well as simulation results from smart grid use cases for real power planning scenarios.

[1]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[2]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[3]  Sascha Ossowski,et al.  Dynamic Coalition Adaptation for Efficient Agent-Based Virtual Power Plants , 2011, MATES.

[4]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[5]  D. Tax,et al.  Feature scaling in support vector data description , 2002 .

[6]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[7]  Michael Sonnenschein,et al.  Support vector based encoding of distributed energy resources' feasible load spaces , 2010, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe).

[8]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[9]  Dae Gyu Kim,et al.  Riemann mapping based constraint handling for evolutionary search , 1998, SAC '98.

[10]  GUNAR E. LIEPINS,et al.  Representational issues in genetic optimization , 1990, J. Exp. Theor. Artif. Intell..

[11]  Sebastian Lehnhoff,et al.  Support vector machines for an efficient representation of voltage band constraints , 2011, 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies.

[12]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[13]  Robert P. W. Duin,et al.  Feature Scaling in Support Vector Data Descriptions , 2000 .

[14]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[15]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[17]  Manuel A. Matos,et al.  A meta‐heuristic approach to the unit commitment problem under network constraints , 2008 .

[18]  Michael Sonnenschein,et al.  Constraint-handling for Optimization with Support Vector Surrogate Models - A Novel Decoder Approach , 2013, ICAART.

[19]  Oliver Kramer,et al.  A Review of Constraint-Handling Techniques for Evolution Strategies , 2010, Appl. Comput. Intell. Soft Comput..

[20]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[21]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[22]  Sarvapali D. Ramchurn,et al.  Agent-based control for decentralised demand side management in the smart grid , 2011, AAMAS.

[23]  A. Papalexopoulos,et al.  Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[24]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[25]  David Stuart Robertson,et al.  Enacting the Distributed Business Workflows Using BPEL4WS on the Multi-agent Platform , 2005, MATES.

[26]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[27]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[28]  Jaap Gordijn,et al.  Agent-Based Electricity Balancing with Distributed Energy Resources,  A Multiperspective Case Study , 2008, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[29]  Michael Sonnenschein,et al.  Encoding distributed search spaces for virtual power plants , 2011, 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG).

[30]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[31]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[32]  Hans-Jürgen Appelrath,et al.  Towards Reactive Scheduling for Large-Scale Virtual Power Plants , 2009, MATES.

[33]  Rineke Verbrugge,et al.  ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, Volume 2, Barcelona, Spain, 15-18 February, 2013 , 2013, ICAART.