Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective

This review provides an insight into the simulation of gold nanoparticles supported on oxide surfaces, with particular emphasis on the applications in heterogeneous catalysis. Some important methodological issues are firstly addressed: the polymorphism of small gold clusters, the difficulty in determining the actual charge state of adsorbed gold atoms, the relevance of long‐range dispersion and relativistic effects and the size‐effects in modelling Au nanoparticles. Then, the adsorption of Au species on oxides is addressed by comparing bulk oxides to ultrathin oxide films supported on metals. The role of defects as nucleation centres is also discussed. Finally, this review addresses the contribution from computational studies on the mechanisms involving Au‐based heterogeneous catalysts in important reactions such as the CO oxidation, the water‐gas shift reaction and the CO2 hydrogenation to methanol.

[1]  J. Campbell The surface science of metal oxides , 1994 .

[2]  J. Park,et al.  High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level , 2009, Proceedings of the National Academy of Sciences.

[3]  L. Giordano,et al.  Nb-doped CaO: an efficient electron donor system , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on the gold atom and gold hydride in the framework of the douglas-kroll transformation , 1994 .

[5]  Direct measurement of the attractive interaction forces on F0 color centers on MgO(001) by dynamic force microscopy. , 2010, ACS nano.

[6]  Jijun Zhao,et al.  Density-functional study of Au n ( n = 2 – 2 0 ) clusters: Lowest-energy structures and electronic properties , 2002 .

[7]  C. Liang,et al.  Titelbild: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions (Angew. Chem. 1/2015) , 2015 .

[8]  D. Matthey,et al.  Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) , 2007, Science.

[9]  N. Nilius,et al.  Nucleation of gold atoms on vanadyl-terminated V2O3(0001) , 2009 .

[10]  D. Wayne Goodman,et al.  Metal nanoclusters supported on metal oxide thin films: bridging the materials gap , 2000 .

[11]  N. Browning,et al.  Erratum: Adsorption and diffusion of Pt and Au on the stoichiometric and reduced TiO 2 rutile (110) surfaces [Phys. Rev. B 72, 081407(R) (2005)] , 2006 .

[12]  M. Saqlain,et al.  Thermally activated surface oxygen defects at the perimeter of Au/TiO2: a DFT+U study. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Zhongfang Chen,et al.  CO oxidation on TiO(2) (110) supported subnanometer gold clusters: size and shape effects. , 2013, Journal of the American Chemical Society.

[14]  T. Risse,et al.  EPR properties of Au atoms adsorbed on various sites of the MgO(100) surface from relativistic DFT calculations , 2006 .

[15]  H. Freund,et al.  Carbon dioxide activation and reaction induced by electron transfer at an oxide-metal interface. , 2015, Angewandte Chemie.

[16]  A. Walker Structure and energetics of small gold nanoclusters and their positive ions. , 2005, The Journal of chemical physics.

[17]  C. Campbell,et al.  Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. , 2013, Faraday discussions.

[18]  R. Behm,et al.  Support effects in the Au-catalyzed CO oxidation – Correlation between activity, oxygen storage capacity, and support reducibility , 2010 .

[19]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[20]  C. Mullins,et al.  Surface science investigations of oxidative chemistry on gold. , 2009, Accounts of chemical research.

[21]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[22]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[23]  Lei Li,et al.  Direct simulation evidence of generation of oxygen vacancies at the golden cage Au16 and TiO2 (110) interface for CO oxidation. , 2014, Journal of the American Chemical Society.

[24]  Peter Schwerdtfeger,et al.  A systematic search for minimum structures of small gold clusters Au(n) (n=2-20) and their electronic properties. , 2009, The Journal of chemical physics.

[25]  Soon Wen Hoh,et al.  A density functional study of oxygen vacancy formation on α-Fe2O3(0001) surface and the effect of supported Au nanoparticles , 2015, Research on Chemical Intermediates.

[26]  Jianbo Wu,et al.  Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. , 2012, Chemical Society reviews.

[27]  J. Koutecký,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties , 1993 .

[28]  Byeongdu Lee,et al.  Selective propene epoxidation on immobilized au(6-10) clusters: the effect of hydrogen and water on activity and selectivity. , 2009, Angewandte Chemie.

[29]  Gold and Silver Clusters on TiO2 and ZrO2 (101) Surfaces: Role of Dispersion Forces , 2015 .

[30]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[31]  P. Kamat,et al.  Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level , 2003 .

[32]  D. Willock,et al.  Theory and simulation in heterogeneous gold catalysis. , 2008, Chemical Society reviews.

[33]  Ping Liu,et al.  A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: the case of the highly active metal/CeOx/TiO2(110) catalysts. , 2010, The Journal of chemical physics.

[34]  B. Molina,et al.  DFT normal modes of vibration of the Au20 cluster , 2008 .

[35]  M. V. Ganduglia-Pirovano,et al.  Electron localization in defective ceria films: a study with scanning-tunneling microscopy and density-functional theory. , 2011, Physical review letters.

[36]  A. D. Corso,et al.  Structural and electronic properties of small Cun clusters using generalized-gradient approximations within density functional theory , 1998 .

[37]  G. Henkelman,et al.  Understanding the Nucleation and Growth of Metals on TiO2: Co compared to Au, Ni and Pt , 2013 .

[38]  K. Reuter,et al.  Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO. , 2013, Angewandte Chemie.

[39]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[40]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[41]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. II , 2005 .

[42]  Ilkeun Lee,et al.  Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2 , 2014, Proceedings of the National Academy of Sciences.

[43]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[44]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. III. , 2008, Chemical Society reviews.

[45]  M. Aguirre,et al.  Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2 , 2010 .

[46]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[47]  Ping Liu,et al.  Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. , 2010, Journal of the American Chemical Society.

[48]  Chem. , 2020, Catalysis from A to Z.

[49]  James Spivey,et al.  A review of dry (CO2) reforming of methane over noble metal catalysts. , 2014, Chemical Society reviews.

[50]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[51]  F. Illas,et al.  Density Functional Theory Study of the Interaction of Cu, Ag, and Au Atoms with the Regular CeO2 (111) Surface , 2010 .

[52]  L. Giordano,et al.  Charging of metal atoms on ultrathin MgO/Mo(100) films. , 2005, Physical review letters.

[53]  Ping Liu,et al.  High Water−Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size , 2009 .

[54]  Einstellung der Gleichgewichtsform metallischer Nanopartikel durch Dotierung des Oxidträgers , 2011 .

[55]  Shengguang Wang,et al.  Single Gold Atom Adsorption on the Fe3O4(111) Surface , 2012 .

[56]  K. Honkala,et al.  Au Adsorption on Regular and Defected Thin MgO(100) Films Supported by Mo , 2007 .

[57]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[58]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[59]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[60]  Richard L. Martin,et al.  Hybrid density-functional theory and the insulating gap of UO2. , 2002, Physical review letters.

[61]  B. Hammer,et al.  2D-3D transition for cationic and anionic gold clusters: a kinetic energy density functional study. , 2009, Journal of the American Chemical Society.

[62]  Chan,et al.  Reconstruction of the (100) surfaces of Au and Ag. , 1991, Physical review. B, Condensed matter.

[63]  A. Corma,et al.  A collaborative effect between gold and a support induces the selective oxidation of alcohols. , 2005, Angewandte Chemie.

[64]  Hans-Joachim Freund,et al.  Oxide surfaces , 1996 .

[65]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[66]  Pekka Pyykkö Theoretische Chemie des Golds , 2004 .

[67]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[68]  Bjørk Hammer,et al.  Some recent theoretical advances in the understanding of the catalytic activity of Au , 2005 .

[69]  N. Rösch,et al.  Systematic Density Functional Study of the Adsorption of Transition Metal Atoms on the MgO(001) Surface , 1997 .

[70]  G. Henkelman,et al.  CO Oxidation at the Au/TiO2 Boundary: The Role of the Au/Ti5c Site , 2015 .

[71]  Wei Huang,et al.  Relativistic effects and the unique low-symmetry structures of gold nanoclusters. , 2008, ACS nano.

[72]  L. Giordano,et al.  Charge-induced formation of linear Au clusters on thin MgO films: Scanning tunneling microscopy and density-functional theory study , 2008 .

[73]  M. Musiał,et al.  Where does the planar-to-nonplanar turnover occur in small gold clusters? , 2005, Journal of the American Chemical Society.

[74]  Kebin Zhou,et al.  Highly reducible CeO2 nanotubes , 2007 .

[75]  N. Nilius Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy , 2009 .

[76]  A. Corma,et al.  Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. , 2006, Chemical communications.

[77]  H. Freund,et al.  Stabilizing gold adatoms by thiophenyl derivatives: a possible route toward metal redispersion. , 2012, Journal of the American Chemical Society.

[78]  G. Pacchioni,et al.  Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2. , 2015, Physical chemistry chemical physics : PCCP.

[79]  G. Pacchioni,et al.  CO Oxidation on a Au/TiO2 Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen Mechanism , 2018, ACS Catalysis.

[80]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[81]  M. Saqlain,et al.  A DFT+U study of the Mars Van Krevelen mechanism of CO oxidation on Au/TiO2 catalysts , 2016 .

[82]  Uzi Landman,et al.  Gold clusters(AuN,2<~N<~10)and their anions , 2000 .

[83]  L. Giordano,et al.  Control of the charge state of metal atoms on thin MgO films. , 2007, Physical review letters.

[84]  David C. Cantu,et al.  CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways. , 2016, Journal of the American Chemical Society.

[85]  W. Andreoni,et al.  Structural and electronic properties of sodium microclusters (n=2–20) at low and high temperatures: New insights from ab initio molecular dynamics studies , 1991 .

[86]  R. Behm,et al.  Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. , 2011, Angewandte Chemie.

[87]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[88]  G. Pacchioni First Principles Calculations on Oxide-Based Heterogeneous Catalysts and Photocatalysts: Problems and Advances , 2014, Catalysis Letters.

[89]  Hyuck-Mo Lee,et al.  Titanium-promoted Au–Ti bimetallic nanoparticle catalysts for CO oxidation: A theoretical approach , 2016 .

[90]  U. Landman,et al.  Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. , 2006, Physical review letters.

[91]  L. Giordano,et al.  Tailoring the shape of metal ad-particles by doping the oxide support. , 2011, Angewandte Chemie.

[92]  D. Goodman,et al.  New approach to the preparation of ultrathin silicon dioxide films at low temperatures , 1992 .

[93]  G. Pacchioni,et al.  Trends in Adhesion Energies of Gold on MgO(100), Rutile TiO2(110), and CeO2(111) Surfaces: A Comparative DFT Study , 2017 .

[94]  P. Schwerdtfeger,et al.  Relativistic coupled cluster calculations for neutral and singly charged Au3 clusters , 2000 .

[95]  F. Illas,et al.  Adsorption of Cu, Pd, and Cs Atoms on Regular and Defect Sites of the SiO2Surface , 1999 .

[96]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[97]  Konstantin M. Neyman,et al.  On the difficulties of present theoretical models to predict the oxidation state of atomic Au adsorbed on regular sites of CeO2(111). , 2009, The Journal of chemical physics.

[98]  A. Corma,et al.  Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters : Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold MERCEDES BORONAT , , 2013 .

[99]  Bjørk Hammer,et al.  A genetic algorithm for first principles global structure optimization of supported nano structures. , 2014, The Journal of chemical physics.

[100]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[101]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[102]  G. Pacchioni,et al.  Charging of Au atoms on TiO2 thin films from CO vibrational spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[103]  M. El-Sayed,et al.  Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. , 2003, Journal of the American Chemical Society.

[104]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[105]  L. Giordano,et al.  Activation of oxygen on MgO: O2*- radical ion formation on thin, metal-supported MgO(001) films. , 2011, Angewandte Chemie.

[106]  Bjørk Hammer,et al.  Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) , 2004 .

[107]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[108]  H. Freund,et al.  Quantum well states in two-dimensional gold clusters on MgO thin films. , 2008, Physical review letters.

[109]  H. Freund,et al.  Aktivierung von molekularem Sauerstoff auf MgO: Bildung von O2˙ˉ auf dünnen, trägerfixierten MgO(001)-Filmen , 2011 .

[110]  R. Behm,et al.  Reactive oxygen on a Au/TiO2 supported catalyst , 2009 .

[111]  Amorphous structures of Cu, Ag, and Au nanoclusters from first principles calculations , 2002 .

[112]  T. Risse,et al.  Gold supported on thin oxide films: from single atoms to nanoparticles. , 2008, Accounts of chemical research.

[113]  Hiroaki Sakurai,et al.  Hydrogenation of CO2 over gold supported on metal oxides , 1993 .

[114]  G. Pacchioni,et al.  Adsorption and Dimerization of Late Transition Metal Atoms on the Regular and Defective Quartz (001) Surface , 2017, Topics in Catalysis.

[115]  Alessandro Fortunelli,et al.  The Interaction of Coinage Metal Clusters with the MgO(100) Surface. , 2005, Journal of chemical theory and computation.

[116]  G. Pacchioni,et al.  Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies , 2017 .

[117]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[118]  John P. Perdew,et al.  Density functional theory and the band gap problem , 1986 .

[119]  C. Minot,et al.  Adsorption of the first row of transition metals on the perfect and defective MgO(1 0 0) surface , 2008 .

[120]  R. Johnston,et al.  Global optimization of clusters using electronic structure methods , 2013 .

[121]  W. Eberhardt Clusters as new materials , 2002 .

[122]  F. Stavale,et al.  Donor characteristics of transition-metal-doped oxides: Cr-doped MgO versus Mo-doped CaO. , 2012, Journal of the American Chemical Society.

[123]  J. Rodríguez,et al.  Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts , 2016 .

[124]  J. Nørskov,et al.  Insights into the reactivity of supported Au nanoparticles: combining theory and experiments , 2007 .

[125]  K. Prince,et al.  Electronic Structure of Magnesia−Ceria Model Catalysts, CO2 Adsorption, and CO2 Activation: A Synchrotron Radiation Photoelectron Spectroscopy Study , 2011 .

[126]  J. Paier,et al.  Reduction and oxidation of Au adatoms on the CeO2(111) surface - DFT+U versus hybrid functionals. , 2017, Physical chemistry chemical physics : PCCP.

[127]  C. Gigola,et al.  Particle size effect in the hydrogenation of acetylene under industrial conditions , 1986 .

[128]  Mikael P. Johansson,et al.  2D-3D transition of gold cluster anions resolved , 2008 .

[129]  L. Giordano,et al.  Oxide films at the nanoscale: new structures, new functions, and new materials. , 2011, Accounts of chemical research.

[130]  M. V. Ganduglia-Pirovano,et al.  Do Au Atoms Titrate Ce3+ Ions at the CeO2–x(111) Surface? , 2016 .

[131]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[132]  Li Xiao,et al.  From planar to three-dimensional structural transition in gold clusters and the spin–orbit coupling effect , 2004 .

[133]  Bjørk Hammer,et al.  Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory. , 2012, Physical review letters.

[134]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[135]  M. Haruta,et al.  EPR Study of CO and O2 Interaction with Supported Au Catalysts , 2001 .

[136]  A. Sánchez,et al.  The reactivity of gold and platinum metals in their cluster phase , 1999 .

[137]  D. Pletcher,et al.  CO Oxidation on Gold in Acidic Environments: Particle Size and Substrate Effects , 2007 .

[138]  G. Pacchioni,et al.  Anchoring Small Au Clusters on the Dehydroxylated and Hydroxylated SiO2 α-Quartz (001) Surface via Ti-Alloying , 2017 .

[139]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[140]  S. C. Ammal,et al.  Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: a periodic electrostatic embedded cluster model study. , 2010, The Journal of chemical physics.

[141]  K. Balasubramanian,et al.  Infrared vibronic absorption spectrum and spin–orbit calculations of the upper spin–orbit component of the Au3 ground state , 2002 .

[142]  R. Behm,et al.  Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. , 2014, Accounts of chemical research.

[143]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[144]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[145]  H. Freund,et al.  Adsorption on ordered surfaces of ionic solids and thin films : proceedings of the 106th WE-Heraeus Seminar, Bad Honnef, Germany, February 15-18, 1993 , 1993 .

[146]  Ping Liu,et al.  Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. , 2007, Angewandte Chemie.

[147]  D. Widmann,et al.  Aktiver Sauerstoff auf einem Au/TiO2-Katalysator – Bildung, Stabilität und Aktivität für die CO-Oxidation† , 2011 .

[148]  Graeme Henkelman,et al.  Small Pd Clusters, up to the tetramer at least, are highly mobile on the MgO(100) surface. , 2005, Physical review letters.

[149]  P. Pyykkö,et al.  Dirac-Fock one-centre calculations. The molecules CuH, AgH and AuH including p-type symmetry functions , 1976 .

[150]  M. Muhler,et al.  Chemische Aktivität von dünnen Oxidschichten: Starke Träger- Wechselwirkungen ergeben eine neue ZnO-Dünnfilmphase , 2013 .

[151]  C. Campbell,et al.  Trends in Adhesion Energies of Metal Nanoparticles on Oxide Surfaces: Understanding Support Effects in Catalysis and Nanotechnology. , 2017, ACS nano.

[152]  H. Metiu,et al.  Density functional study of the charge on Aun clusters (n=1-7) supported on a partially reduced rutile TiO2(110): are all clusters negatively charged? , 2007, The Journal of chemical physics.

[153]  G. Henkelman,et al.  CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism. , 2013, The journal of physical chemistry letters.

[154]  Ping Liu,et al.  Low Pressure CO2 Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO(x)/TiO2 Interface. , 2015, Journal of the American Chemical Society.

[155]  Remarkably Strong Chemisorption of Nitric Oxide on Insulating Oxide Films Promoted by Hybrid Structure , 2017, 1705.02590.

[156]  K. Honkala,et al.  Adsorption of gold clusters on metal-supported MgO: Correlation to electron affinity of gold , 2007 .

[157]  G. Pacchioni,et al.  CO Oxidation on Au Nanoparticles Supported on ZrO2: Role of Metal/Oxide Interface and Oxide Reducibility , 2017 .

[158]  Jiří Pittner,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small anionic Agn clusters: Predictions and interpretation of photodetachment spectra , 1994 .

[159]  B. Hammer,et al.  The activity of the tetrahedral Au20 cluster: charging and impurity effects , 2005 .

[160]  G. Pacchioni Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. , 2013, Physical chemistry chemical physics : PCCP.

[161]  Zhaolong Zhang,et al.  Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts , 1996 .