A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA

The two Caenorhabditis elegans gustatory neurons, ASE left (ASEL) and ASE right (ASER) are morphologically bilaterally symmetric, yet left/right asymmetric in function and in the expression of specific chemosensory signaling molecules. The ASEL versus ASER cell-fate decision is controlled by a complex gene regulatory network composed of microRNAs (miRNAs) and transcription factors. Alterations in the activities of each of these regulatory factors cause a complete lateral cell-fate switch. Here, we describe lsy-2, a novel C2H2 zinc finger transcription factor that is required for the execution of the ASEL stable state. In lsy-2 null mutants, the ASEL neuron adopts the complete ASER gene expression profile, including both upstream regulatory and terminal effector genes. The normally left/right asymmetric ASE neurons are therefore `symmetrized' in lsy-2 mutants. Cell-specific rescue experiments indicate that lsy-2 is required autonomously in ASEL for the activation of ASEL-specifying factors and the repression of ASER-specifying factors. Genetic epistasis experiments demonstrate that lsy-2 exerts its activity by regulating the transcription of the lsy-6 miRNA in the ASEL neuron, thereby making lsy-2 one of the few factors known to control the cell-type specificity of miRNA gene expression.

[1]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[2]  Oliver Hobert,et al.  A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. , 2003, Genes & development.

[3]  David L. Spector,et al.  Nuclear speckles: a model for nuclear organelles , 2003, Nature Reviews Molecular Cell Biology.

[4]  Stephen L. Johnson,et al.  The zebrafish klf gene family. , 2001, Blood.

[5]  S. Iuchi,et al.  Three classes of C 2 H 2 zinc finger proteins , 2001 .

[6]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[7]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[8]  S. Berget,et al.  Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity , 1997, The EMBO journal.

[9]  F. Huang,et al.  SUMO Modification of Repression Domains Modulates Function of Nuclear Receptor 5A1 (Steroidogenic Factor-1)* , 2004, Journal of Biological Chemistry.

[10]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[11]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[13]  W. Gish,et al.  Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map , 2001, Nature Genetics.

[14]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[15]  G. Ruvkun,et al.  The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. , 1999, Development.

[16]  E. Milgrom,et al.  Subcellular Localization and Mechanisms of Nucleocytoplasmic Trafficking of Steroid Receptor Coactivator-1* , 2003, Journal of Biological Chemistry.

[17]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[18]  R. Jackson Genomic regulatory systems , 2001 .

[19]  P. Sternberg,et al.  Caenorhabditis elegans cog-1 locus encodes GTX/Nkx6.1 homeodomain proteins and regulates multiple aspects of reproductive system development. , 2002, Developmental biology.

[20]  R. Urrutia,et al.  Sp1- and Krüppel-like transcription factors , 2003, Genome Biology.

[21]  Sandhya P Koushika,et al.  Loss of the Putative RNA-Directed RNA Polymerase RRF-3 Makes C. elegans Hypersensitive to RNAi , 2002, Current Biology.

[22]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[23]  L. Avery,et al.  LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. , 2003, Developmental biology.

[24]  T. Jessell,et al.  Progression from Extrinsic to Intrinsic Signaling in Cell Fate Specification A View from the Nervous System , 1999, Cell.

[25]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[26]  O. Hobert,et al.  A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. , 2001, Development.

[27]  T. Barnes,et al.  The Groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans. , 1997, Development.

[28]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[29]  M. Vigneron,et al.  In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. , 1987, Genes & development.

[30]  H. Horvitz,et al.  Heterochronic mutants of the nematode Caenorhabditis elegans. , 1984, Science.

[31]  Y. Shi,et al.  Nuclear Speckle-Associated Protein Pnn/DRS Binds to the Transcriptional Corepressor CtBP and Relieves CtBP- Mediated Repression of the E-Cadherin Gene , 2004, Molecular and Cellular Biology.

[32]  Oliver Hobert,et al.  PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. , 2002, BioTechniques.

[33]  J. Hodgkin,et al.  Natural variation and copulatory plug formation in Caenorhabditis elegans. , 1997, Genetics.

[34]  J. Thomas,et al.  The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans. , 2000, Development.

[35]  J. V. Falvo,et al.  Stimulus-Specific Assembly of Enhancer Complexes on the Tumor Necrosis Factor Alpha Gene Promoter , 2000, Molecular and Cellular Biology.

[36]  S. Iuchi,et al.  Three classes of C2H2 zinc finger proteins , 2001, Cellular and Molecular Life Sciences CMLS.

[37]  Oliver Hobert,et al.  MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[39]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[40]  Andrew G Fraser,et al.  Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions , 2003, PLoS biology.

[41]  Oliver Hobert,et al.  MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode , 2004, Nature.