Genomic changes following host restriction in bacteria.

Many genomic sequences have been recently published for bacteria that can replicate only within eukaryotic hosts. Comparisons of genomic features with those of closely related bacteria retaining free-living stages indicate that rapid evolutionary change often occurs immediately after host restriction. Typical changes include a large increase in the frequency of mobile elements in the genome, chromosomal rearrangements mediated by recombination among these elements, pseudogene formation, and deletions of varying size. In anciently host-restricted lineages, the frequency of insertion sequence elements decreases as genomes become extremely small and strictly clonal. These changes represent a general syndrome of genome evolution, which is observed repeatedly in host-restricted lineages from numerous phylogenetic groups. Considerable variation also exists, however, in part reflecting unstudied aspects of the population structure and ecology of host-restricted bacterial lineages.

[1]  F. Jiggins The rate of recombination in Wolbachia bacteria. , 2002, Molecular biology and evolution.

[2]  B. Spratt,et al.  How Clonal Is Staphylococcus aureus? , 2003, Journal of bacteriology.

[3]  M. Suyama,et al.  Evolution of prokaryotic gene order: genome rearrangements in closely related species. , 2001, Trends in genetics : TIG.

[4]  N. Moran,et al.  The process of genome shrinkage in the obligate symbiont Buchnera aphidicola , 2001, Genome Biology.

[5]  Ruiting Lan,et al.  Escherichia coli in disguise: molecular origins of Shigella. , 2002, Microbes and infection.

[6]  C. Fraser,et al.  Complete genome sequence of the Q-fever pathogen Coxiella burnetii , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Moya,et al.  Genome size reduction through multiple events of gene disintegration in Buchnera APS. , 2001, Trends in genetics : TIG.

[8]  P. Kittayapong,et al.  Wolbachia Infections of Tephritid Fruit Flies: Molecular Evidence for Five Distinct Strains in a Single Host Species , 2002, Current Microbiology.

[9]  N. Moran,et al.  Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. , 2003, Molecular biology and evolution.

[10]  C. Monsempès,et al.  Multiple Mobile Promoter Regions for the Rare Carbapenem Resistance Gene of Bacteroides fragilis , 2001, Journal of bacteriology.

[11]  U. Römling,et al.  Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs , 2002, Molecular microbiology.

[12]  R. Marre,et al.  The Bacterial Insertion Sequence Element IS256 Occurs Preferentially in Nosocomial Staphylococcus epidermidis Isolates: Association with Biofilm Formation and Resistance to Aminoglycosides , 2004, Infection and Immunity.

[13]  D. Petrov,et al.  Transposable elements in clonal lineages: lethal hangover from sex , 2003 .

[14]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[16]  M. Kivisaar,et al.  Identification and Characterization of IS1411, a New Insertion Sequence Which Causes Transcriptional Activation of the Phenol Degradation Genes inPseudomonas putida , 1998 .

[17]  M. Kivisaar,et al.  Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. , 1998, Journal of bacteriology.

[18]  Dmitrij Frishman,et al.  Illuminating the Evolutionary History of Chlamydiae , 2004, Science.

[19]  N. Moran,et al.  A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  R. Nichols,et al.  Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. , 2003, Genome research.

[21]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[22]  H. Ochman,et al.  Genome evolution in enteric bacteria. , 1995, Current opinion in genetics & development.

[23]  Hidemi Watanabe,et al.  Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia , 2002, Nature Genetics.

[24]  S. Andersson,et al.  Birth and death of orphan genes in Rickettsia. , 2003, Molecular biology and evolution.

[25]  A. Heddi,et al.  Comparative Genomics of Insect-Symbiotic Bacteria: Influence of Host Environment on Microbial Genome Composition , 2003, Applied and Environmental Microbiology.

[26]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[27]  C. Bloch,et al.  "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Paul Keim,et al.  Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Julian Parkhill,et al.  The complete genome sequence of Mycobacterium bovis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Nalin Rastogi,et al.  Evolutionary Relationships among Strains of Mycobacterium tuberculosis with Few Copies of IS6110 , 2003, Journal of bacteriology.

[31]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[33]  L. Keller,et al.  High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. , 2003, Molecular biology and evolution.

[34]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[35]  B. Barrell,et al.  Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  B. Barrell,et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.

[37]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[38]  M Achtman,et al.  Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Jie Dong,et al.  Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. , 2002, Nucleic acids research.

[40]  S. Andersson,et al.  Proliferation and deterioration of Rickettsia palindromic elements. , 2002, Molecular biology and evolution.

[41]  G. Weinstock,et al.  Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Wei Wei,et al.  Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma , 2004, Nature Genetics.

[43]  Jacques Mahillon,et al.  Insertion Sequences revisited , 2002 .

[44]  B. Samten,et al.  IS6110 functions as a mobile, monocyte‐activated promoter in Mycobacterium tuberculosis , 2004, Molecular microbiology.

[45]  S M Payne,et al.  Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T , 2003, Infection and Immunity.

[46]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[47]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[48]  M. Blaxter,et al.  Phylogeny of Wolbachia in filarial nematodes , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  D. Relman,et al.  Bordetella Species Are Distinguished by Patterns of Substantial Gene Loss and Host Adaptation , 2004, Journal of bacteriology.

[50]  I. Kobayashi,et al.  Identification in Methicillin-Susceptible Staphylococcus hominis of an Active Primordial Mobile Genetic Element for the Staphylococcal Cassette Chromosome mec of Methicillin-Resistant Staphylococcus aureus , 2003, Journal of bacteriology.

[51]  Midori Kato-Maeda,et al.  Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[53]  Jürgen Gadau,et al.  The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Simmonds,et al.  Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.

[55]  J. Werren,et al.  Recombination in Wolbachia , 2001, Current Biology.