Algorithms for Deciding Counting Quantifiers over Unary Predicates
暂无分享,去创建一个
[1] W. Spears. Probabilistic Satisfiability , 1992 .
[2] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[3] Marcelo Finger,et al. Probabilistic Satisfiability: Logic-Based Algorithms and Phase Transition , 2011, IJCAI.
[4] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[5] Friedrich Eisenbrand,et al. Carathéodory bounds for integer cones , 2006, Oper. Res. Lett..
[6] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[7] Martin Otto,et al. On Logics with Two Variables , 1999, Theor. Comput. Sci..
[8] Ian Pratt-Hartmann. Complexity of the Two-Variable Fragment with Counting Quantifiers , 2005, J. Log. Lang. Inf..
[9] Toby Walsh,et al. The SAT Phase Transition , 1994, ECAI.
[10] Armin Biere. Lingeling Essentials, A Tutorial on Design and Implementation Aspects of the the SAT Solver Lingeling , 2014, POS@SAT.
[11] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[12] Nils J. Nilsson,et al. Probabilistic Logic * , 2022 .
[13] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[14] Barnaby Martin,et al. Constraint Satisfaction with Counting Quantifiers , 2012, CSR.
[15] Perlindström. First Order Predicate Logic with Generalized Quantifiers , 1966 .
[16] Hector J. Levesque,et al. Hard and Easy Distributions of SAT Problems , 1992, AAAI.
[17] Joost P. Warners,et al. A Linear-Time Transformation of Linear Inequalities into Conjunctive Normal Form , 1998, Inf. Process. Lett..
[18] Pierre Hansen,et al. Column Generation Methods for Probabilistic Logic , 1989, INFORMS J. Comput..
[19] Ndrei,et al. Galois correspondence for counting quantifiers , 2013 .
[20] Franz Baader,et al. Cardinality Restrictions on Concepts , 1994, KI.
[21] Ian Pratt-Hartmann. On the Computational Complexity of the Numerically Definite Syllogistic and Related Logics , 2008, Bull. Symb. Log..
[22] Marcelo Finger,et al. Probabilistic satisfiability: algorithms with the presence and absence of a phase transition , 2015, Annals of Mathematics and Artificial Intelligence.
[23] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .