A Sparse Unreliable Distributed Code Underlies the Limits of Behavioral Discrimination

The cortical code that underlies perception must enable subjects to perceive the world at timescales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these timescales, we measured single unit responses in the mouse visual cortex at timescales relevant to this task. In contrast to high contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in V1 such that the activity of individual neurons do not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50-100 neurons is sufficient to account for behavioral performance. Thus, at the limits of perception the visual system is able to integrate information across a relatively small number of highly unreliable single units to generate reliable behavior.

[1]  Andrew D. Zaharia,et al.  The Detection of Visual Contrast in the Behaving Mouse , 2011, The Journal of Neuroscience.

[2]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[3]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[4]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[5]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[6]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  M. Scanziani,et al.  Tuned Thalamic Excitation is Amplified by Visual Cortical Circuits , 2013, Nature Neuroscience.

[8]  G. DeAngelis,et al.  Parallel Input Channels to Mouse Primary Visual Cortex , 2010, The Journal of Neuroscience.

[9]  M. Scanziani,et al.  Distinct recurrent versus afferent dynamics in cortical visual processing , 2015, Nature Neuroscience.

[10]  Ilya Nemenman,et al.  Motor control by precisely timed spike patterns , 2016, Proceedings of the National Academy of Sciences.

[11]  Pamela Reinagel,et al.  Evidence That Primary Visual Cortex Is Required for Image, Orientation, and Motion Discrimination by Rats , 2013, PloS one.

[12]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[13]  Philip Meier,et al.  Collinear features impair visual detection by rats. , 2011, Journal of vision.

[14]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[15]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[16]  Louise Poissant Part I , 1996, Leonardo.

[17]  Ilya Nemenman,et al.  Millisecond-Scale Motor Encoding in a Cortical Vocal Area , 2014, PLoS biology.

[18]  W. Singer,et al.  Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey , 1992, The European journal of neuroscience.

[19]  Christopher C. Pack,et al.  Bidirectional manipulation of GABAergic inhibition in MT: A comparison of neuronal and psychophysical performance , 2014 .

[20]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[21]  C. Niell,et al.  Vision Drives Accurate Approach Behavior during Prey Capture in Laboratory Mice , 2016, Current Biology.

[22]  Hans Strasburger,et al.  Assessing spatial vision — automated measurement of the contrast-sensitivity function in the hooded rat , 2000, Journal of Neuroscience Methods.

[23]  David A Leopold,et al.  Primary visual cortex: awareness and blindsight. , 2012, Annual review of neuroscience.

[24]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[25]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[26]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[27]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[28]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[29]  Robert A. Marino,et al.  Free viewing of dynamic stimuli by humans and monkeys. , 2009, Journal of vision.

[30]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[31]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[32]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[33]  John H R Maunsell,et al.  Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony , 2013, Proceedings of the National Academy of Sciences.

[34]  M. Young,et al.  Longer fixation duration while viewing face images , 2006, Experimental Brain Research.

[35]  G. Orban,et al.  How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[37]  Ingo Fründ,et al.  Inference for psychometric functions in the presence of nonstationary behavior. , 2011, Journal of vision.

[38]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[39]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[40]  Jakob Voigts,et al.  Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology , 2015, Current Opinion in Neurobiology.

[41]  Lindsey L. Glickfeld,et al.  Mouse Primary Visual Cortex Is Used to Detect Both Orientation and Contrast Changes , 2013, The Journal of Neuroscience.

[42]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.

[43]  M. Meister,et al.  Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli , 2013, Current Biology.

[44]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[45]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[46]  Georg B. Keller,et al.  Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex , 2015, Neuron.

[47]  Dominique L. Pritchett,et al.  Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli , 2014, Nature Neuroscience.

[48]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Valentin Dragoi,et al.  Correlated Variability in Laminar Cortical Circuits , 2012, Neuron.

[50]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[51]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[52]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[53]  Cyrille Rossant,et al.  Spike sorting for large, dense electrode arrays , 2015 .

[54]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[55]  Maik C. Stüttgen,et al.  Psychophysical and neurometric detection performance under stimulus uncertainty , 2008, Nature Neuroscience.

[56]  Timothy D. Hanks,et al.  Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task , 2011, The Journal of Neuroscience.

[57]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  A. Cowey,et al.  Blindsight in monkeys , 1995, Nature.

[59]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[60]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[61]  David Melcher,et al.  Trans-Saccadic Perception: “Object-otopy” across Space and Time , 2010 .

[62]  D. R. Muir,et al.  Functional organization of excitatory synaptic strength in primary visual cortex , 2015, Nature.

[63]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[64]  John O'Keefe,et al.  Hippocampus, theta, and spatial memory , 1993, Current Opinion in Neurobiology.

[65]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[66]  R. Douglas,et al.  Characterization of mouse cortical spatial vision , 2004, Vision Research.

[67]  William R. Softky,et al.  Simple codes versus efficient codes , 1995, Current Opinion in Neurobiology.

[68]  Alan Agresti,et al.  Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures , 2000 .

[69]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[70]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[71]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[72]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.

[73]  Lindsey L. Glickfeld,et al.  Cortico-cortical projections in mouse visual cortex are functionally target specific , 2013, Nature Neuroscience.

[74]  Mark Mazurek,et al.  Robust quantification of orientation selectivity and direction selectivity , 2014, Front. Neural Circuits.

[75]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[76]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[77]  Daniel N Hill,et al.  Quality Metrics to Accompany Spike Sorting of Extracellular Signals , 2011, The Journal of Neuroscience.

[78]  G. Leuba,et al.  Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man , 2004, Experimental Brain Research.

[79]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[80]  Pamela Reinagel,et al.  Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats. , 2016, Journal of neurophysiology.

[81]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[82]  Pamela Reinagel Speed and accuracy of visual image discrimination by rats , 2013, Front. Neural Circuits.

[83]  Bingni W. Brunton,et al.  Rats and Humans Can Optimally Accumulate Evidence for Decision-Making , 2013, Science.

[84]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[85]  Haishan Yao,et al.  Contrast-dependent orientation discrimination in the mouse , 2015, Scientific Reports.

[86]  A. Pouget,et al.  The Cost of Accumulating Evidence in Perceptual Decision Making , 2012, The Journal of Neuroscience.

[87]  A. Marcel Conscious and unconscious perception: An approach to the relations between phenomenal experience and perceptual processes , 1983, Cognitive Psychology.