Dynamic offset-cancellation techniques

This chapter describes the theory and design of the different kinds of dynamic offset-cancellation techniques. These techniques can reduce the offset of an amplifier by a factor of 100 to 1000 and do not need trimming. Knowledge of these techniques is necessary to improve the accuracy of CMOS smart temperature sensors. Also in this chapter, a new technique is proposed that can even further reduce the offset. This technique is called the “nested chopper technique”. An implementation of this new technique is shown and measurement results are discussed.

[1]  W. R. Clark,et al.  D-C Amplifier Stabilized for Zero and Gain , 1948, Transactions of the American Institute of Electrical Engineers.

[2]  A. Hastings The Art of Analog Layout , 2000 .

[3]  Alberto Bilotti,et al.  Chopper-stabilized amplifiers with a track-and-hold signal demodulator , 1999 .

[4]  M. Degrauwe,et al.  A Micropower CMOS-Instrumentation Amplifier , 1985, IEEE Journal of Solid-State Circuits.

[5]  Q. Huang A 200nV offset 6.5nV/*Hz noise PSD 5.6kHz chopper instrumentation amplifier in 1μm digital CMOS , 2001 .

[6]  Marvin H. White,et al.  Characterization of surface channel CCD image arrays at low light levels , 1974 .

[7]  A. Bakker,et al.  A CMOS nested-chopper instrumentation amplifier with 100-nV offset , 2000, IEEE Journal of Solid-State Circuits.

[8]  I. E. Opris,et al.  A rail-to-rail ping-pong op-amp , 1996, IEEE J. Solid State Circuits.

[9]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[10]  E. Vittoz,et al.  A CMOS Chopper Amplifier , 1986, ESSCIRC '86: Twelfth European Solid-State Circuits Conference.

[11]  W. Guggenbuhl,et al.  On charge injection in analog MOS switches and dummy switch compensation techniques , 1990 .

[12]  Kofi A. A. Makinwa,et al.  A wind sensor with an integrated low-offset instrumentation amplifier , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[13]  A. Bakker,et al.  High-Accuracy CMOS Smart Temperature Sensors , 2000 .

[14]  S. P. Emmons,et al.  Noise in buried channel charge-coupled devices , 1976, IEEE Transactions on Electron Devices.

[15]  C. Hagleitner,et al.  N-well based CMOS calorimetric chemical sensors , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[16]  Chong-Gun Yu,et al.  An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers , 1994 .

[17]  Qiuting Huang,et al.  A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset , 1999 .

[18]  P. de Jong,et al.  A 300/spl deg/C dynamic-feedback instrumentation amplifier , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[19]  W. Guggenbuhl,et al.  Charge injection of analogue CMOS switches , 1991 .

[20]  P.R. Gray,et al.  A low-noise chopper-stabilized differential switched-capacitor filtering technique , 1981, IEEE Journal of Solid-State Circuits.

[21]  Qiuting Huang,et al.  A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors , 1997 .

[22]  Gerard C. M. Meijer,et al.  Concepts and focus point for intelligent sensor systems , 1994 .

[23]  A.H.M. van Roermund,et al.  A 300°C Dynamic-Feedback Instrumentation Amplifier , 1998 .