Applications of Data Mining in Constraint-based Intelligent Tutoring Systems

The number of ITSs being used daily is growing steadily. Consequently, huge amounts of interaction data are available, but data analysis is still very laborious. This paper describes the use of data mining processes to investigate student interaction with a constraint-based tutor. We discuss how statistical analyses, information visualization and machine learning algorithms can be used to discover interesting patterns in data, and how the findings can be used to improve the system.

[1]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[2]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[3]  S. Salzberg,et al.  INSTANCE-BASED LEARNING : Nearest Neighbour with Generalisation , 1995 .

[4]  John R. Anderson,et al.  Cognitive Tutors: Lessons Learned , 1995 .

[5]  Brent Martin,et al.  INSTANCE-B ASED LEARNING: Nearest Neighbour with Generalisation , 1995 .

[6]  Antonija Mitrovic,et al.  NORMIT: a Web-enabled tutor for database normalization , 2002, International Conference on Computers in Education, 2002. Proceedings..

[7]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[8]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[9]  Jack Mostow,et al.  Lessons on Using ITS Data to Answer Educational Research Questions , 2004 .

[10]  B. Marx The Visual Display of Quantitative Information , 1985 .

[11]  Ian Witten,et al.  Data Mining , 2000 .

[12]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[13]  Kenneth R. Koedinger,et al.  Distinguishing Qualitatively Different Kinds of Learning Using Log Files and Learning Curves , 2005 .

[14]  Antonija Mitrovic,et al.  Using Evaluation to Shape ITS Design: Results and Experiences with SQL-Tutor , 2002, User Modeling and User-Adapted Interaction.

[15]  Ian H. Witten,et al.  Generating Accurate Rule Sets Without Global Optimization , 1998, ICML.

[16]  Antonija Mitrovic,et al.  Evaluating the Effects of Open Student Models on Learning , 2002, AH.

[17]  Christian Borgelt,et al.  Induction of Association Rules: Apriori Implementation , 2002, COMPSTAT.

[18]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[19]  Antonija Mitrovic,et al.  Authoring web-based tutoring systems with WETAS , 2002, International Conference on Computers in Education, 2002. Proceedings..

[20]  Antonija Mitrovic,et al.  Evaluation of a Constraint-Based Tutor for a Database Language , 1999 .

[21]  Stellan Ohlsson,et al.  Constraint-Based Student Modeling , 1994 .

[22]  Agathe Merceron,et al.  A Web-Based Tutoring Tool with Mining Facilities to Improve Learning and Teaching , 2003 .

[23]  Antonija Mitrovic,et al.  Using a Probabilistic Student Model to Control Problem Difficulty , 2000, Intelligent Tutoring Systems.

[24]  Mia Stern,et al.  Applications of AI in education , 1996, CROS.

[25]  Antonija Mitrovic,et al.  KERMIT: A Constraint-Based Tutor for Database Modeling , 2002, Intelligent Tutoring Systems.

[26]  Jack Mostow Some Useful Design Tactics for Mining ITS Data , 2004 .

[27]  Sebastián Ventura,et al.  Discovering Prediction Rules in AHA! Courses , 2003, User Modeling.

[28]  C. Lebiere,et al.  The Atomic Components of Thought , 1998 .

[29]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[30]  Beverly Park Woolf,et al.  Inferring Unobservable Learning Variables from Students' Help Seeking Behavior , 2004, Intelligent Tutoring Systems.

[31]  Tanja Mitrovic,et al.  Constraint-based tutors: a success story , 2001, AIED.

[32]  Jadzia Cendrowska,et al.  PRISM: An Algorithm for Inducing Modular Rules , 1987, Int. J. Man Mach. Stud..