Generalized decomposition and cross entropy methods for many-objective optimization

Decomposition-based algorithms for multi-objective optimization problems have increased in popularity in the past decade. Although convergence to the Pareto optimal front (PF) for such algorithms can often be superior to that of Pareto-based alternatives, the problem of effectively distributing Pareto optimal solutions in a high-dimensional space has not been solved. In this work, we introduce a novel concept which we call generalized decomposition. Generalized decomposition provides a framework with which the decision maker (DM) can guide the underlying search algorithm toward specific regions of interest, or the entire Pareto front, with the desired distribution of Pareto optimal solutions. The method simplifies many-objective problems by unifying the three performance objectives of an a posteriori multi-objective optimizer - convergence to the PF, evenly distributed Pareto optimal solutions and coverage of the entire front - to only one, that of convergence. A framework, established on generalized decomposition, and an estimation of distribution algorithm (EDA) based on low-order statistics, namely the cross-entropy method, is created to illustrate the benefits of the proposed concept for many-objective problems. The algorithm - MACE-gD - is shown to be highly competitive with the existing best-in-class decomposition-based algorithm (MOEA/D) and a more elaborate EDA method (RM-MEDA).

[1]  Qingfu Zhang,et al.  A multiobjective evolutionary algorithm based on decomposition and probability model , 2012, 2012 IEEE Congress on Evolutionary Computation.

[2]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[3]  Xin Yao,et al.  Analysis of Computational Time of Simple Estimation of Distribution Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[4]  Reza Tavakkoli-Moghaddam,et al.  A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: Weighted mean completion time and weighted mean tardiness , 2007, Inf. Sci..

[5]  Elizabeth F. Wanner,et al.  On a Stochastic Differential Equation Approach for Multiobjective Optimization up to Pareto-Criticality , 2011, EMO.

[6]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[7]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[8]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[9]  J. Marchal Cours d'economie politique , 1950 .

[10]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[11]  Yong Wang,et al.  A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator , 2012, Appl. Soft Comput..

[12]  J. Dennis,et al.  NORMAL-BOUNDARY INTERSECTION: AN ALTERNATE METHOD FOR GENERATING PARETO OPTIMAL POINTS IN MULTICRITERIA OPTIMIZATION PROBLEMS , 1996 .

[13]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[14]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[15]  Ricardo H. C. Takahashi,et al.  A new constrained ellipsoidal algorithm for nonlinear optimization with equality constraints , 2003 .

[16]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Qingfu Zhang,et al.  On the limits of effectiveness in estimation of distribution algorithms , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[18]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[19]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization , 2008, 2008 3rd International Workshop on Genetic and Evolving Systems.

[20]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[21]  Mehrdad Shahshahani,et al.  Distributing Points on the Sphere, I , 2003, Exp. Math..

[22]  Liang Gao,et al.  An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem , 2009, Comput. Ind. Eng..

[23]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[24]  Peter J. Fleming,et al.  Towards Understanding the Cost of Adaptation in Decomposition-Based Optimization Algorithms , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[25]  Evan J. Hughes,et al.  MSOPS-II: A general-purpose Many-Objective optimiser , 2007, 2007 IEEE Congress on Evolutionary Computation.

[26]  F. Y. Edgeworth Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences , 2007 .

[27]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[28]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[29]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[30]  David H. Wolpert,et al.  Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics , 2004, ArXiv.

[31]  Dirk Thierens,et al.  The Naive MIDEA: A Baseline Multi-objective EA , 2005, EMO.

[32]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[33]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[34]  Kalyanmoy Deb,et al.  Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.

[35]  Martin Pelikan,et al.  Bayesian Optimization Algorithm , 2005 .

[36]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[37]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[38]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[39]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[40]  Hisao Ishibuchi,et al.  Effects of using two neighborhood structures on the performance of cellular evolutionary algorithms for many-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[41]  Peter J. Fleming,et al.  Distributed aero-engine control systems architecture selection using multi-objective optimisation , 1998 .

[42]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[43]  William E. Hart,et al.  Protein structure prediction with evolutionary algorithms , 1999 .

[44]  Jie Zhang,et al.  Multiobjective optimization by decomposition with Pareto-adaptive weight vectors , 2011, ICNC.

[45]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[46]  Aurora Trinidad Ramirez Pozo,et al.  Effective Linkage Learning Using Low-Order Statistics and Clustering , 2009, IEEE Transactions on Evolutionary Computation.

[47]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[48]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[49]  David E. Goldberg,et al.  Multiobjective Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[50]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[51]  David E. Goldberg,et al.  Hierarchical Bayesian Optimization Algorithm , 2006, Scalable Optimization via Probabilistic Modeling.

[52]  M. Pelikán,et al.  A Survey of Estimation of Distribution Algorithms , 2011 .

[53]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[54]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[55]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[56]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[57]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[58]  Peter J. Fleming,et al.  An overview of population-based algorithms for multi-objective optimisation , 2015, Int. J. Syst. Sci..

[59]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[60]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[61]  Jiang Siwei,et al.  Multiobjective optimization by decomposition with Pareto-adaptive weight vectors , 2011, 2011 Seventh International Conference on Natural Computation.

[62]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[63]  Hong Li,et al.  MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives , 2013, Comput. Oper. Res..

[64]  Peter J. Fleming,et al.  Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation , 2003, EMO.

[65]  Peter J. Fleming,et al.  Methods for multi-objective optimization: An analysis , 2015, Inf. Sci..

[66]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[67]  Jie Zhang,et al.  Asymmetric Pareto-adaptive Scheme for Multiobjective Optimization , 2011, Australasian Conference on Artificial Intelligence.

[68]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[69]  Dirk P. Kroese,et al.  Generalized Cross-entropy Methods with Applications to Rare-event Simulation and Optimization , 2007, Simul..

[70]  Steven B. Damelin,et al.  Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..

[71]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[72]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[73]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[74]  Stephen P. Boyd,et al.  Disciplined Convex Programming , 2006 .

[75]  Carlos A. Coello Coello,et al.  Applications of multi-objective evolutionary algorithms in economics and finance: A survey , 2007, 2007 IEEE Congress on Evolutionary Computation.

[76]  R. Rubinstein A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation* , 2005 .

[77]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[78]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.