The number of tree species on Earth

Significance Tree diversity is fundamental for forest ecosystem stability and services. However, because of limited available data, estimates of tree diversity at large geographic domains still rely heavily on published lists of species descriptions that are geographically uneven in coverage. These limitations have precluded efforts to generate a global perspective. Here, based on a ground-sourced global database, we estimate the number of tree species at biome, continental, and global scales. We estimated a global tree richness (≈73,300) that is ≈14% higher than numbers known today, with most undiscovered species being rare, continentally endemic, and tropical or subtropical. These results highlight the vulnerability of global tree species diversity to anthropogenic changes. One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.

Maria E. Kamenetsky | Javier G. P. Gamarra | J. Terborgh | M. Herold | B. Pijanowski | N. Picard | F. Rovero | A. Marshall | Jean‐François Bastin | T. Crowther | P. Reich | B. Enquist | O. Phillips | E. Broadbent | P. Brancalion | A. A. Almeyda Zambrano | G. Nabuurs | J. Bogaert | Y. Malhi | D. Coomes | S. Lewis | T. Feldpausch | J. Barroso | M. Bastian | F. Bongers | C. Clark | D. Harris | A. Araujo-Murakami | L. Poorter | J. Poulsen | H. Ramírez-Angulo | M. Silveira | E. Vilanova | V. Vos | L. White | Mait Lang | E. Cienciala | Jun Zhu | G. Aymard | C. Hui | G. Alberti | D. Kennard | V. Avitabile | T. Zawila-Niedzwiecki | V. Johannsen | V. Šebeň | L. Dee | Han Y. H. Chen | F. Brearley | A. Hemp | N. Labrière | B. Sonké | A. Vibrans | S. Wiser | M. Djuikouo | K. Jeffery | H. Taedoumg | L. Zemagho | J. Svenning | A. Paquette | D. Schepaschenko | Zhi-Xin Zhu | M. Rodeghiero | K. Stereńczak | H. Pretzsch | P. Saikia | Amit Kumar | Ashwani Kumar | P. K. Khare | M. L. Khan | M. Scherer‐Lorenzen | T. Jucker | J. Fridman | D. Piotto | R. Bałazy | F. Bussotti | S. de-Miguel | J. Gamarra | C. Merow | C. Baraloto | J. Engel | P. Pétronelli | B. Jaroszewicz | F. van der Plas | B. Westerlund | O. Bouriaud | Jingjing Liang | B. Hérault | G. Hengeveld | S. Pfautsch | H. Viana | Nadja Tchebakova | H. S. Kim | A. Jagodziński | P. Peri | R. Vásquez | E. Rutishauser | D. Jacobs | P. Birnbaum | M. Svoboda | R. Cazzolla Gatti | Víctor Chama Moscoso | Zorayda Restrepo Correa | Mathieu Decuyper | N. Parthasarathy | T. Ibanez | R. César | N. P. Pallqui Camacho | K. Kartawinata | Robert Giaquinto | S. Dayanandan | G. Derroire | Jhon del Aguila Pasquel | G. Keppel | E. Tikhonova | J. Doležal | F. Slik | S. Rolim | A. Kangur | H. Korjus | Abel Monteagudo Mendoza | T. Fayle | D. Laarmann | P. Ontikov | O. Martynenko | A. F. Souza | Christian Salas‐Eljatib | Arindam Banerjee | I. C. Zo-Bi | Minjee Park | Ilija Đorđević | Rocío del Pilar Rojas Gonzáles | Hua‐Feng Wang | A. Torres‐Lezama | Junho Lee | Tran Van Do | A. Morera | Goran Češljar | Esteban Alvarez-Davila | Jinyun Fang | R. Bitariho | J. Serra-Diaz | Z. Zhu | Brian Salvin Maitner | S. Kepfer-Rojas | Edgar Ortiz-Malavasi | J. del Aguila Pasquel | Wendeson Castro da Silva | V. Karminov | Timothy J Kileen | N. Lukina | S. Kepfer‐Rojas | Fons van der Plas | Jonas Fridman | Jens‐Christian Svenning | Lise Zemagho | R. Vasquez | Edgar Ortiz‐Malavasi

[1]  Diego F. Correa,et al.  Biased-corrected richness estimates for the Amazonian tree flora , 2020, Scientific Reports.

[2]  Robert K. Colwell,et al.  Quantifying sample completeness and comparing diversities among assemblages , 2020, Ecological Research.

[3]  Daniel S. Park,et al.  The commonness of rarity: Global and future distribution of rarity across land plants , 2019, Science Advances.

[4]  P. Reich,et al.  When Do Ecosystem Services Depend on Rare Species? , 2019, Trends in ecology & evolution.

[5]  Hang Sun,et al.  Global and regional tree species diversity , 2019 .

[6]  N. Pitman,et al.  Towards a dynamic list of Amazonian tree species , 2019, Scientific Reports.

[7]  M. Loreau,et al.  Seasonal patterns in species diversity across biomes. , 2019, Ecology.

[8]  J. Harte,et al.  Upscaling biodiversity: Estimating the species-area relationship from small samples , 2018 .

[9]  R. Gatti A century of biodiversity: some open questions and some answers , 2017 .

[10]  Josep M. Serra-Diaz,et al.  Big data of tree species distributions: how big and how good? , 2017, Forest Ecosystems.

[11]  W. D. Stevens,et al.  Amazon plant diversity revealed by a taxonomically verified species list , 2017, Proceedings of the National Academy of Sciences.

[12]  Brian J. McGill,et al.  The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database , 2017 .

[13]  Robert K. Colwell,et al.  Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling , 2017 .

[14]  Alan Grainger,et al.  The extent of forest in dryland biomes , 2017, Science.

[15]  S. Oldfield,et al.  GlobalTreeSearch: The first complete global database of tree species and country distributions , 2017 .

[16]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[17]  J. Franklin,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016, Science.

[18]  N. Pitman,et al.  The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa , 2016, Scientific Reports.

[19]  G. Dauby,et al.  RAINBIO: a mega-database of tropical African vascular plants distributions , 2016, PhytoKeys.

[20]  S. Williams,et al.  Rare species contribute disproportionately to the functional structure of species assemblages , 2016, Proceedings of the Royal Society B: Biological Sciences.

[21]  Anne Chao,et al.  Estimating and comparing microbial diversity in the presence of sequencing errors , 2016, PeerJ.

[22]  D. Graham,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016 .

[23]  C. Bettigole,et al.  Mapping tree density at a global scale , 2015, Nature.

[24]  P. Crane Can we save the charismatic megaflora? , 2015, Oryx.

[25]  Stephen P Hubbell,et al.  Estimating the global number of tropical tree species, and Fisher’s paradox , 2015, Proceedings of the National Academy of Sciences.

[26]  David Kenfack,et al.  An estimate of the number of tropical tree species , 2015, Proceedings of the National Academy of Sciences.

[27]  Kalle Ruokolainen,et al.  Hyperdominance in Amazonian forest carbon cycling , 2015, Nature Communications.

[28]  A. Chao,et al.  An improved nonparametric lower bound of species richness via a modified good–turing frequency formula , 2014, Biometrics.

[29]  Brett J Furnas,et al.  Detecting diversity: emerging methods to estimate species diversity. , 2014, Trends in ecology & evolution.

[30]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[31]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[32]  R. Zang,et al.  Assessing non-parametric and area-based methods for estimating regional species richness , 2012 .

[33]  A. Chao,et al.  Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. , 2012, Ecology.

[34]  Brett R. Scheffers,et al.  What we know and don't know about Earth's missing biodiversity. , 2012, Trends in ecology & evolution.

[35]  Oliver R. Wearn,et al.  Extinction Debt and Windows of Conservation Opportunity in the Brazilian Amazon , 2012, Science.

[36]  G. Daily,et al.  Biodiversity loss and its impact on humanity , 2012, Nature.

[37]  Libing Zhang,et al.  Distribution of living Cupressaceae reflects the breakup of Pangea , 2012, Proceedings of the National Academy of Sciences.

[38]  M. Crisp,et al.  Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. , 2011, The New phytologist.

[39]  B. A. Hawkins,et al.  Global angiosperm family richness revisited: linking ecology and evolution to climate , 2011 .

[40]  D. Kent,et al.  Climatically driven biogeographic provinces of Late Triassic tropical Pangea , 2011, Proceedings of the National Academy of Sciences.

[41]  C. Marshall,et al.  Has the Earth’s sixth mass extinction already arrived? , 2011, Nature.

[42]  Anne E. Magurran,et al.  Biological Diversity: Frontiers in Measurement and Assessment , 2011 .

[43]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[44]  Jianquan Liu,et al.  Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. , 2010, The New phytologist.

[45]  James H. Brown,et al.  Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America , 2009, Proceedings of the National Academy of Sciences.

[46]  Anne Chao,et al.  Sufficient sampling for asymptotic minimum species richness estimators. , 2009, Ecology.

[47]  S. Hubbell,et al.  How many tree species are there in the Amazon and how many of them will go extinct? , 2008, Proceedings of the National Academy of Sciences.

[48]  Gregory P Asner,et al.  The biogeochemical heterogeneity of tropical forests. , 2008, Trends in ecology & evolution.

[49]  Amos Maritan,et al.  Patterns of relative species abundance in rainforests and coral reefs , 2007, Nature.

[50]  P. Balvanera,et al.  Quantifying the evidence for biodiversity effects on ecosystem functioning and services. , 2006, Ecology letters.

[51]  T. Brooks,et al.  Global Biodiversity Conservation Priorities , 2006, Science.

[52]  Kevin M. Clarke,et al.  Estimating Species Richness , 2005 .

[53]  D. Ellsworth Carbon and Nitrogen Cycling in European Forest Ecosystems , 2004 .

[54]  Neo D. Martinez,et al.  ESTIMATING SPECIES RICHNESS: SENSITIVITY TO SAMPLE COVERAGE AND INSENSITIVITY TO SPATIAL PATTERNS , 2003 .

[55]  N. Pitman,et al.  Extinction‐Rate Estimates for a Modern Neotropical Flora , 2002 .

[56]  H. Wagner,et al.  Realistic simulation of the effects of abundance distribution and spatial heterogeneity on non-parametric estimators of species richness , 2002 .

[57]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[58]  K. Gaston Global patterns in biodiversity , 2000, Nature.

[59]  E. Schulze The carbon and nitrogen cycle of forest ecosystems , 2000 .

[60]  S. Morand,et al.  Comparative performance of species richness estimation methods , 1998, Parasitology.

[61]  S. Oldfield,et al.  The world list of threatened trees , 1998 .

[62]  R M May,et al.  Conceptual aspects of the quantification of the extent of biological diversity. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  Robert K. Colwell,et al.  Estimating terrestrial biodiversity through extrapolation. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  A. Chao,et al.  Estimating the Number of Classes via Sample Coverage , 1992 .

[65]  T. F. H. Allen,et al.  The confusion between scale‐defined levels and conventional levels of organization in ecology , 1990 .

[66]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[67]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[68]  A. Chao Estimating the population size for capture-recapture data with unequal catchability. , 1987, Biometrics.

[69]  A. Chao Nonparametric estimation of the number of classes in a population , 1984 .

[70]  R. Fisher,et al.  The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population , 1943 .