Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation

Abstract. The impact of NO x and HO x production by three types of energetic particle precipitation (EPP), auroral zone medium and high energy electrons, solar proton events and galactic cosmic rays on the middle atmosphere is examined using a chemistry climate model. This process study uses ensemble simulations forced by transient EPP derived from observations with one-year repeating sea surface temperatures and fixed chemical boundary conditions for cases with and without solar cycle in irradiance. Our model results show a wintertime polar stratosphere ozone reduction of between 3 and 10 % in agreement with previous studies. EPP is found to modulate the radiative solar cycle effect in the middle atmosphere in a significant way, bringing temperature and ozone variations closer to observed patterns. The Southern Hemisphere polar vortex undergoes an intensification from solar minimum to solar maximum instead of a weakening. This changes the solar cycle variation of the Brewer-Dobson circulation, with a weakening during solar maxima compared to solar minima. In response, the tropical tropopause temperature manifests a statistically significant solar cycle variation resulting in about 4 % more water vapour transported into the lower tropical stratosphere during solar maxima compared to solar minima. This has implications for surface temperature variation due to the associated change in radiative forcing.

[1]  Astrid Maute,et al.  Thermosphere extension of the Whole Atmosphere Community Climate Model , 2010 .

[2]  G. Meehl,et al.  SOLAR INFLUENCES ON CLIMATE , 2010 .

[3]  D. Marsh,et al.  Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings , 2010 .

[4]  B. Funke,et al.  Energetic particle precipitation in ECHAM5/MESSy - Part 2: Solar proton events , 2010 .

[5]  I. Usoskin,et al.  Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere , 2010 .

[6]  Joanna D. Haigh,et al.  Solar cycle signals in sea level pressure and sea surface temperature , 2010 .

[7]  S. Solomon,et al.  Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming , 2010, Science.

[8]  N. Gillett,et al.  Quantitative assessment of Southern Hemisphere ozone in chemistry-climate model simulations , 2010 .

[9]  T. Reddmann,et al.  Modeling disturbed stratospheric chemistry during solar-induced NOx enhancements observed with MIPAS/ENVISAT , 2010 .

[10]  Susann Tegtmeier,et al.  Technical Note: A SAGE-corrected SBUV zonal-mean ozone data set , 2009 .

[11]  C. McLandress,et al.  Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. , 2009 .

[12]  C. Randall,et al.  Geomagnetic activity and polar surface air temperature variability , 2009 .

[13]  V. Fomichev The radiative energy budget of the middle atmosphere and its parameterization in general circulation models , 2009 .

[14]  Donal P. Murtagh,et al.  Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology , 2009 .

[15]  N. Mitchell,et al.  The two-day wave in the Antarctic and Arctic mesosphere and lower thermosphere , 2009 .

[16]  P. Bernath,et al.  NOx descent in the Arctic middle atmosphere in early 2009 , 2009 .

[17]  H. Douville,et al.  Stratospheric polar vortex influence on Northern Hemisphere winter climate variability , 2009 .

[18]  Rolando R. Garcia,et al.  Long‐term middle atmospheric influence of very large solar proton events , 2009 .

[19]  A. J. Miller,et al.  An update of observed stratospheric temperature trends , 2009 .

[20]  Judith Lean,et al.  Exploring the stratospheric/tropospheric response to solar forcing , 2008 .

[21]  C. Brühl,et al.  Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NO x produced by low energy electrons , 2008 .

[22]  David A. Plummer,et al.  Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere , 2008 .

[23]  S. Brohede,et al.  Odin stratospheric proxy NO y measurements and climatology , 2008 .

[24]  T. Clarmann,et al.  Model simulations of stratospheric ozone loss caused by enhanced mesospheric NO x during Arctic Winter 2003/2004 , 2008 .

[25]  T. Shepherd,et al.  Past and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Atmosphere Model , 2008 .

[26]  J. C. McConnell,et al.  N2O production by high energy auroral electron precipitation , 2008 .

[27]  Anne K. Smith,et al.  Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004 , 2008 .

[28]  C. Brühl,et al.  Coupled chemistry climate model simulations of the solar cycle in ozone and temperature , 2008 .

[29]  Donal P. Murtagh,et al.  Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 - Part 2: High-altitude polar enhancements , 2008 .

[30]  G. Bazilevskaya,et al.  Cosmic Ray Induced Ion Production in the Atmosphere , 2008 .

[31]  D. Marsh,et al.  Short- and medium-term atmospheric constituent effects of very large solar proton events , 2008 .

[32]  M. Sigmond,et al.  Solar modulation of the Northern Hemisphere winter trends and its implications with increasing CO2 , 2008 .

[33]  Rolando R. Garcia,et al.  Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing , 2007 .

[34]  K. M. Nissen,et al.  Towards a better representation of the solar cycle in general circulation models , 2007 .

[35]  M. Schwartz,et al.  The wintertime two-day wave in the polar stratosphere, mesosphere and lower thermosphere , 2007 .

[36]  C. Brühl,et al.  Multimodel projections of stratospheric ozone in the 21st century , 2007 .

[37]  T. Shepherd,et al.  Summertime stratospheric processes at northern mid-latitudes: comparisons between MANTRA balloon measurements and the Canadian Middle Atmosphere Model , 2007 .

[38]  W. Randel,et al.  A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data , 2007 .

[39]  J. Russell,et al.  Large increase of NO2 in the north polar mesosphere in January–February 2004: Evidence of a dynamical origin from GOMOS/ENVISAT and SABER/TIMED data , 2007 .

[40]  L. Polvani,et al.  A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks , 2007 .

[41]  L. Polvani,et al.  A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations , 2007 .

[42]  Tapio Schneider,et al.  Comment on "Spatio-temporal filling of missing points in geophysical data sets" by D. Kondrashov and M. Ghil, Nonlin. Processes Geophys., 13, 151-159, 2006 , 2007 .

[43]  Michael Ghil,et al.  Reply to T. Schneider's comment on "Spatio-temporal filling of missing points in geophysical data sets" , 2007 .

[44]  Herbert M. Pickett,et al.  Production of odd hydrogen in the mesosphere during the January 2005 solar proton event , 2006 .

[45]  Volker Grewe,et al.  Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past , 2006 .

[46]  I. Usoskin,et al.  Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications , 2006 .

[47]  L. Hood,et al.  Solar induced variations of odd nitrogen: Multiple regression analysis of UARS HALOE data , 2006 .

[48]  L. Hood,et al.  Solar cycle variation of stratospheric ozone: Multiple regression analysis of long‐term satellite data sets and comparisons with models , 2006 .

[49]  K. Kodera,et al.  Solar influence on the tropical stratosphere and troposphere in the northern summer , 2006 .

[50]  T. Shepherd,et al.  Large‐scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model , 2006 .

[51]  W. White Response of tropical global ocean temperature to the Sun's quasi‐decadal UV radiative forcing of the stratosphere , 2006 .

[52]  T. Diehl,et al.  The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO2 Doubling , 2006 .

[53]  Kunihiko Kodera,et al.  Influence of stratospheric sudden warming on the equatorial troposphere , 2006 .

[54]  Kalevi Mursula,et al.  Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004 , 2005 .

[55]  S. Tilmes,et al.  Impact of mixing and chemical change on ozone-tracer relations in the polar vortex , 2005 .

[56]  Sergio Gil-Lopez,et al.  An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003 , 2005 .

[57]  D. Fussen,et al.  First simultaneous global measurements of nighttime stratospheric NO2 and NO3 observed by Global Ozone Monitoring by Occultation of Stars (GOMOS)/Envisat in 2003 , 2005 .

[58]  T. Clarmann,et al.  Observation of NO(x) Enhancement and Ozone Depletion in the Northern and Southern hemispheres after the October-November 2003 Solar Proton Events , 2005 .

[59]  M. Schlesinger,et al.  Atmospheric response to NOy source due to energetic electron precipitation , 2005 .

[60]  C. Brühl,et al.  Chemical effects in 11‐year solar cycle simulations with the Freie Universität Berlin Climate Middle Atmosphere Model with online chemistry (FUB‐CMAM‐CHEM) , 2005 .

[61]  P. Keckhut,et al.  The 11-year solar-cycle effects on the temperature in the upper-stratosphere and mesosphere: Part I—Assessment of observations , 2005 .

[62]  Cora E. Randall,et al.  An upper stratospheric layer of enhanced HNO3 following exceptional solar storms , 2005 .

[63]  J. Zawodny,et al.  Stratospheric effects of energetic particle precipitation in 2003–2004 , 2005 .

[64]  Claus Fröhlich,et al.  Solar radiative output and its variability: evidence and mechanisms , 2004 .

[65]  S. Beagley,et al.  Model thermal response to minor radiative energy sources and sinks in the middle atmosphere , 2004 .

[66]  E. Manzini,et al.  Chemical and dynamical response to the 11‐year variability of the solar irradiance simulated with a chemistry‐climate model , 2004 .

[67]  A. Kylling,et al.  Summertime low‐ozone episodes at northern high latitudes , 2003 .

[68]  K. Kodera,et al.  Dynamical response to the solar cycle , 2002 .

[69]  A. J. Miller,et al.  Global and zonal total ozone variations estimated from ground‐based and satellite measurements: 1964–2000 , 2002 .

[70]  Shigeo Yoden,et al.  Numerical Studies on Time Variations of the Troposphere-Stratosphere Coupled System , 2002 .

[71]  K. Kodera,et al.  Effect of Solar Activity on the Polar-night Jet Oscillation in the Northern and Southern Hemisphere Winter , 2002 .

[72]  Paul J. Kushner,et al.  Tropospheric response to stratospheric perturbations in a relatively simple general circulation model , 2002 .

[73]  Y. Orsolini Long‐lived tracer patterns in the summer polar stratosphere , 2001 .

[74]  C. Randall,et al.  Stratospheric NOx enhancements in the Southern Hemisphere Vortex in winter/spring of 2000 , 2001 .

[75]  M. Natarajan,et al.  Solar‐atmospheric coupling by electrons (SOLACE): 3. Comparisons of simulations and observations, 1979–1997, issues and implications , 2001 .

[76]  J. C. McConnell,et al.  Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model , 2000 .

[77]  W. Ward,et al.  The Extended Canadian Middle Atmosphere Model , 2000 .

[78]  B. Boville,et al.  Kinetic energy spectrum of horizontal motions in middle-atmosphere models , 1999 .

[79]  Rind,et al.  Solar cycle variability, ozone, and climate , 1999, Science.

[80]  C. Randall,et al.  Polar Ozone and Aerosol Measurement (POAM) II stratospheric NO2, 1993–1996 , 1998 .

[81]  D. Baker,et al.  Solar atmospheric coupling by electrons (SOLACE): 2. Calculated stratospheric effects of precipitating electrons, 1979–1988 , 1998 .

[82]  K. Wolter,et al.  Measuring the strength of ENSO events: How does 1997/98 rank? , 1998 .

[83]  S. Beagley,et al.  Canadian middle atmosphere model: Preliminary results from the chemical transport module , 1997 .

[84]  T. Shepherd,et al.  Radiative‐dynamical climatology of the first‐generation Canadian middle atmosphere model , 1997 .

[85]  Michael D. Dettinger,et al.  Response of global upper ocean temperature to changing solar irradiance , 1997 .

[86]  J. Lamarque,et al.  of the different nitrogen sources in the troposphere , 1996 .

[87]  M. Newchurch,et al.  ATMOS Measurements of H2O + 2CH4 and Total Reactive Nitrogen in the November 1994 Antarctic Stratosphere: Dehydration and Denitrification in the Vortex , 1996 .

[88]  D. Baker,et al.  A 2‐D model simulation of downward transport of NOy into the stratosphere: Effects on the 1994 austral spring O3and NOy , 1996 .

[89]  Keith P. Shine,et al.  On the “Downward Control” of Extratropical Diabatic Circulations by Eddy-Induced Mean Zonal Forces , 1991 .

[90]  Gregory C. Reinsel,et al.  Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation , 1990 .

[91]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[92]  E. Remsberg,et al.  The variability of stratospheric and mesospheric NO2 in the polar winter night observed by LIMS. [Limb Infrared Monitor of Stratosphere] , 1984 .

[93]  Guy Brasseur,et al.  Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere , 1984 .

[94]  S. Solomon,et al.  Mesospheric ozone depletion during the Solar Proton Event of July 13, 1982 Part II. Comparison between theory and measurements , 1983 .

[95]  Paul J. Crutzen,et al.  The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen , 1981 .

[96]  P. Crutzen,et al.  Analysis of the August 1972 Solar Proton Event including chlorine chemistry , 1981 .

[97]  M. Heaps Parametrization of the cosmic ray ion-pair production rate above 18 km , 1978 .

[98]  H. Porter,et al.  Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air , 1976 .

[99]  Robert H. Holzworth,et al.  Mathematical representation of the auroral oval , 1975 .

[100]  P. Crutzen,et al.  Solar Proton Events: Stratospheric Sources of Nitric Oxide , 1975, Science.

[101]  T. J. Keneshea,et al.  Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event , 1973 .

[102]  J. Gledhill The range-energy relation for 0.1-600 keV electrons , 1973 .

[103]  P. Warneck Cosmic radiation as a source of odd nitrogen in the stratosphere , 1972 .

[104]  R. Brown Electron precipitation in the auroral zone , 1966 .

[105]  J. Daniel,et al.  A new formulation of equivalent effective stratospheric chlorine (EESC) , 2008 .

[106]  L. Megner Funneling of Meteoric Material into the Polar Winter Vortex , 2007 .

[107]  Matthew T. DeLand,et al.  The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere , 2005 .

[108]  T. Clarmann,et al.  Observation of NOx enhancement and ozone depletion in the Northern and Southern Hemispheres after the October-November 2003 solar proton events : Violent sun-earth connection events of october-November 2003 , 2005 .

[109]  C. Butlerb,et al.  The possible connection between ionization in the atmosphere by cosmic rays and low level clouds , 2004 .

[110]  Stanley C. Solomon,et al.  Global observations of nitric oxide in the thermosphere , 2003 .

[111]  A. Eliassen Slow Thermally or Frictionally Controlled Meridional Circulation in a Circular Vortex , 1951 .

[112]  M. Ghil,et al.  under a Creative Commons License. Nonlinear Processes in Geophysics Spatio-temporal filling of missing points in geophysical data sets , 2022 .

[113]  K. M. Nissen,et al.  Atmospheric Chemistry and Physics towards a Better Representation of the Solar Cycle in General Circulation Models , 2022 .