A multi-agent simulation using cultural algorithms: the effect of culture on the resilience of social systems

Explanations for the collapse of complex social systems including social, political, and economic factors have been suggested. Here we add cultural factors into an agent-based model developed by Kohler for the Mesa Verde Prehispanic Pueblo region. We employ a framework for modeling cultural evolution, cultural algorithms developed by Reynolds (1979). Our approach investigates the impact that the emergent properties of a complex system will have on its resiliency as well as on its potential for collapse. That is, if the system's social structure is brittle, any factor that is able to exploit this fragility can cause a collapse of the system. In particular, we will investigate the impact that environmental variability in the Mesa Verde had on the formation of social networks among agents. Specifically we look at how the spatial distribution of rainfall impacts the systems structure. We show that the distribution of agricultural resources is conducive to the generation of so called "small world" networks that require "conduits" or some agents of larger interconnectivity to link the small worlds together. Experiments show that there is a major decrease in these conduits in early 1200 A.D. This can have s serious potential impact on the networks resiliency. While the simulation shows an upturn near the start of the 14th century it is possible that the damage to the network had already been done.