Linear Time Illumination Invariant Stereo Matching

This paper proposes a new similarity measure that is invariant to global and local affine illumination changes. Unlike existing methods, its computational complexity is very low. When used for stereo correspondence estimation, its computational complexity is linear in the number of image pixels and disparity searching range. It also outperforms the current state of the art similarity measures in terms of accuracy on the Middlebury benchmark (with radiometric differences).

[1]  Michael Goesele,et al.  Multi-View Stereo for Community Photo Collections , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[3]  Jian Sun,et al.  A global sampling method for alpha matting , 2011, CVPR 2011.

[4]  Vladimir Kolmogorov,et al.  Visual correspondence using energy minimization and mutual information , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Stefano Mattoccia,et al.  Linear stereo matching , 2011, 2011 International Conference on Computer Vision.

[7]  Vamshhi Pavan Kumar Varma Vegeshna,et al.  Stereo Matching with Color-Weighted Correlation, Hierachical Belief Propagation and Occlusion Handling , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  Qingxiong Yang,et al.  Stereo Matching Using Tree Filtering , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[10]  Ruigang Yang,et al.  Global stereo matching leveraged by sparse ground control points , 2011, CVPR 2011.

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  Geoffrey Egnal,et al.  Mutual Information as a Stereo Correspondence Measure , 2000 .

[13]  Shmuel Peleg,et al.  Multi-sensor super-resolution , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[14]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[15]  Narendra Ahuja,et al.  A constant-space belief propagation algorithm for stereo matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Jing Xiao,et al.  Importance filtering for image retargeting , 2011, CVPR 2011.

[17]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[18]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[19]  Sang Uk Lee,et al.  Mutual information-based stereo matching combined with SIFT descriptor in log-chromaticity color space , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Sang Uk Lee,et al.  Robust Stereo Matching Using Adaptive Normalized Cross-Correlation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[23]  Stephen Lin,et al.  Semantic colorization with internet images , 2011, ACM Trans. Graph..

[24]  Sang Uk Lee,et al.  Joint Depth Map and Color Consistency Estimation for Stereo Images with Different Illuminations and Cameras , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Jian Sun,et al.  Single image haze removal using dark channel prior , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Dani Lischinski,et al.  A Closed-Form Solution to Natural Image Matting , 2008 .

[27]  Heiko Hirschmüller,et al.  Evaluation of Stereo Matching Costs on Images with Radiometric Differences , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ruigang Yang,et al.  BRDF Invariant Stereo Using Light Transport Constancy , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Ingemar J. Cox,et al.  Dynamic histogram warping of image pairs for constant image brightness , 1995, Proceedings., International Conference on Image Processing.

[32]  Hailin Jin,et al.  A Locally Linear Regression Model for Boundary Preserving Regularization in Stereo Matching , 2012, ECCV.