Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures

The authors report on the optical properties of nanocrystalline ZnO grown at 200°C by radio-frequency magnetron sputtering. The nanocrystalline nature of the films was confirmed by cross-sectional transmission electron microscopy. In these films, ZnO nanocrystals with an average size of about 3–5nm were embedded in an amorphous matrix. The photoluminescence spectra from such nanostructured thin films show the near-band-edge emissions around 3.3eV. A redshift of about 8–11cm−1 is observed in the case of first-order longitudinal-optical (LO) phonon of ZnO in such nanostructures when compared to the LO phonon peak of bulk ZnO. The ultraviolet resonant Raman excitation at 77K shows multiphonon LO modes up to eighth order.

[1]  G. Goh,et al.  Lateral Epitaxial Overgrowth of ZnO in Water at 90 °C , 2006 .

[2]  H. Koinuma,et al.  Spectral shape analysis of ultraviolet luminescence in n-type ZnO:Ga , 2005, cond-mat/0510166.

[3]  C. Thompson,et al.  Growth of single crystal ZnO nanorods on GaN using an aqueous solution method , 2005 .

[4]  Alexander A. Balandin,et al.  Micro-Raman investigation of optical phonons in ZnO nanocrystals , 2005 .

[5]  Y. Hwang,et al.  Quantum confinement in Volmer–Weber-type self-assembled ZnO nanocrystals , 2005 .

[6]  A. Balandin,et al.  Origin of the optical phonon frequency shifts in ZnO quantum dots , 2005 .

[7]  A. Uedono,et al.  Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-assisted molecular-beam epitaxy using a ZnS epitaxial buffer layer , 2004 .

[8]  A. Polity,et al.  Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering , 2004 .

[9]  A. Balandin,et al.  Interface and confined optical phonons in wurtzite nanocrystals , 2004, cond-mat/0405681.

[10]  T. Seong,et al.  Fabrication of ZnO quantum dots embedded in an amorphous oxide layer , 2004 .

[11]  H. Morkoç,et al.  Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films , 2004 .

[12]  T. Chikyow,et al.  V defects of ZnO thin films grown on Si as an ultraviolet optical path , 2004 .

[13]  R. T. Senger,et al.  Optical properties of confined polaronic excitons in spherical ionic quantum dots , 2003 .

[14]  M. Cardona,et al.  Dispersive phonon linewidths: the E2 phonons of ZnO. , 2003, Physical review letters.

[15]  Masashi Kawasaki,et al.  S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method , 2002 .

[16]  X. T. Zhang,et al.  Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films , 2002 .

[17]  X. T. Zhang,et al.  High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films , 2002 .

[18]  M. Rajalakshmi,et al.  Optical phonon confinement in zinc oxide nanoparticles , 2000 .

[19]  D. Jackson,et al.  Fiberised set-up for eye length measurement , 1997 .

[20]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[21]  Fred H. Pollak,et al.  Raman scattering in alloy semiconductors: Spatial correlation model , 1984 .

[22]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[23]  M. Schubert,et al.  Infrared dielectric functions and phonon modes of high-quality ZnO films , 2003 .

[24]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .