Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface

[1]  Cyrus S. Rustomji,et al.  High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes , 2019, Joule.

[2]  Donghai Wang,et al.  Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions , 2019, Nature Materials.

[3]  Yayuan Liu,et al.  Fast galvanic lithium corrosion involving a Kirkendall-type mechanism , 2019, Nature Chemistry.

[4]  Long-Qing Chen,et al.  Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects , 2018, Nature Energy.

[5]  Won Il Cho,et al.  Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries , 2018, Nature Energy.

[6]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[7]  Jun Liu,et al.  Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries , 2018, Nature Energy.

[8]  Shuya Wei,et al.  Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes , 2018, Science Advances.

[9]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[10]  T. Mallouk,et al.  Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. , 2017, Journal of the American Chemical Society.

[11]  L. Nazar,et al.  A facile surface chemistry route to a stabilized lithium metal anode , 2017, Nature Energy.

[12]  Pulickel M. Ajayan,et al.  A materials perspective on Li-ion batteries at extreme temperatures , 2017, Nature Energy.

[13]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[14]  Zhenan Bao,et al.  Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. , 2017, Journal of the American Chemical Society.

[15]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[16]  Tae Kyoung Kim,et al.  Liquefied gas electrolytes for electrochemical energy storage devices , 2017, Science.

[17]  E. Peled,et al.  Review—SEI: Past, Present and Future , 2017 .

[18]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[19]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[20]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[21]  Shuru Chen,et al.  Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries. , 2016, Angewandte Chemie.

[22]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[23]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[24]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[25]  Michael A. Danzer,et al.  Lithium plating in a commercial lithium-ion battery - A low-temperature aging study , 2015 .

[26]  N. Kotov,et al.  A dendrite-suppressing composite ion conductor from aramid nanofibres , 2015, Nature Communications.

[27]  M. Wohlfahrt‐Mehrens,et al.  Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries , 2015 .

[28]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[29]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[30]  Thomas A. Blake,et al.  Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode , 2013 .

[31]  M. Moreno,et al.  Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. , 2011, ACS nano.

[32]  F. Decker,et al.  Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions. , 2010, Physical chemistry chemical physics : PCCP.

[33]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[34]  Marshall C. Smart,et al.  Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes , 2003 .

[35]  Kang Xu,et al.  The low temperature performance of Li-ion batteries , 2003 .

[36]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[37]  F. E. Little,et al.  Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement , 2002 .

[38]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[39]  Hsiu-Ping Lin,et al.  Low-Temperature Behavior of Li-Ion Cells , 2001 .

[40]  G. Nagasubramanian Electrical characteristics of 18650 Li-ion cells at low temperatures , 2001 .

[41]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[42]  N. Dudney Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte , 2000 .

[43]  Edward J. Plichta,et al.  A low-temperature electrolyte for lithium and lithium-ion batteries , 2000 .

[44]  Lithium ion batteries for Mars exploration missions , 2000 .

[45]  B. Ratnakumar,et al.  Irreversible Capacities of Graphite in Low‐Temperature Electrolytes for Lithium‐Ion Batteries , 1999 .

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  D. Mandler,et al.  Applications of self-assembled monolayers in electroanalytical chemistry , 1996 .

[50]  K. Uvdal,et al.  l-cysteine adsorbed on gold and copper: An X-ray photoelectron spectroscopy study , 1992 .

[51]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.