Dissertation to obtain the Master of Science Degree in Biomedical Engineering: Specialization in Biomolecular, Tissue and Organ Engineering

[1]  J. Seelig,et al.  Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9. , 2011, Biochemistry.

[2]  R. Dutch,et al.  Viral entry mechanisms: the increasing diversity of paramyxovirus entry , 2009, The FEBS journal.

[3]  J. Langedijk Translocation Activity of C-terminal Domain of Pestivirus Erns and Ribotoxin L3 Loop* , 2002, The Journal of Biological Chemistry.

[4]  Vladimir B. Bajic,et al.  DAMPD: a manually curated antimicrobial peptide database , 2011, Nucleic Acids Res..

[5]  David R. Liu,et al.  Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins , 2009, Proceedings of the National Academy of Sciences.

[6]  S. Henriques,et al.  Re‐evaluating the role of strongly charged sequences in amphipathic cell‐penetrating peptides , 2005, FEBS letters.

[7]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[8]  M. Ferrer,et al.  Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. , 2005, Biochimica et biophysica acta.

[9]  S. Futaki,et al.  Arginine-rich Peptides , 2001, The Journal of Biological Chemistry.

[10]  Annick Thomas,et al.  Structural polymorphism of two CPP: an important parameter of activity. , 2008, Biochimica et biophysica acta.

[11]  M. Rossmann,et al.  A structural perspective of the flavivirus life cycle , 2005, Nature Reviews Microbiology.

[12]  Kumardeep Chaudhary,et al.  Cell Penetrating Peptides , 2016 .

[13]  A. Arranja,et al.  Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[14]  Miguel A R B Castanho,et al.  Cell-penetrating peptides and antimicrobial peptides: how different are they? , 2006, The Biochemical journal.

[15]  Caroline Louis-Jeune,et al.  Prediction of protein secondary structure from circular dichroism using theoretically derived spectra , 2012, Proteins.

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  B. Nordén,et al.  Membrane binding and translocation of cell-penetrating peptides. , 2004, Biochemistry.

[18]  Charles L. Brooks,et al.  Viral Capsid Proteins Are Segregated in Structural Fold Space , 2013, PLoS Comput. Biol..

[19]  U. Theuretzbacher Global antibacterial resistance: The never-ending story. , 2013, Journal of global antimicrobial resistance.

[20]  M. Castanho,et al.  The Mechanism of Action of Antimicrobial Peptides: Lipid Vesicles vs. Bacteria , 2012, Front. Immun..

[21]  Blood pressure modulation following activation of mast cells by cationic cell penetrating peptides , 2011, Peptides.

[22]  N. C. Santos,et al.  Lipossomas: a bala mágica acertou? , 2002 .

[23]  K. Chou,et al.  iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. , 2013, Analytical biochemistry.

[24]  M. Morris,et al.  Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics , 2009, British journal of pharmacology.

[25]  Astrid Gräslund,et al.  Mechanisms of Cellular Uptake of Cell-Penetrating Peptides , 2011, Journal of biophysics.

[26]  S. Futaki,et al.  Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[27]  D. Craik,et al.  Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. , 2013, Biochimica et biophysica acta.

[28]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[29]  R. Mrsny,et al.  Cell penetrating peptides fail to induce an innate immune response in epithelial cells in vitro: implications for continued therapeutic use. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  D. Andreu,et al.  Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. , 2013, Biopolymers.

[31]  Tina N. Davis,et al.  A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. , 2011, Chemistry & biology.

[32]  D. Andreu,et al.  Quantifying molecular partition of cell‐penetrating peptide–cargo supramolecular complexes into lipid membranes: optimizing peptide‐based drug delivery systems , 2013, Journal of peptide science : an official publication of the European Peptide Society.

[33]  T. Hökfelt,et al.  Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo , 1998, Nature Biotechnology.

[34]  P. Boisguérin,et al.  Comparison of cellular uptake using 22 CPPs in 4 different cell lines. , 2008, Bioconjugate chemistry.

[35]  G. Divita Bioactive cell-penetrating peptides: kill two birds with one stone. , 2010, Chemistry & biology.

[36]  D. Andreu,et al.  Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action , 2014, The FEBS journal.

[37]  James S Murday,et al.  Translational nanomedicine: status assessment and opportunities. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[38]  S. Piotto,et al.  YADAMP: yet another database of antimicrobial peptides. , 2012, International journal of antimicrobial agents.

[39]  Mark Marsh,et al.  Virus Entry: Open Sesame , 2006, Cell.

[40]  G. Wong,et al.  Arginine‐rich cell‐penetrating peptides , 2010, FEBS letters.

[41]  S. Schwarze,et al.  In vivo protein transduction: delivery of a biologically active protein into the mouse. , 1999, Science.

[42]  Shana O Kelley,et al.  Recent advances in the use of cell-penetrating peptides for medical and biological applications. , 2009, Advanced drug delivery reviews.

[43]  J. Leroux,et al.  Is there a future for cell-penetrating peptides in oligonucleotide delivery? , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[44]  H Fessi,et al.  Gene therapy and DNA delivery systems. , 2014, International journal of pharmaceutics.

[45]  R. Brock,et al.  Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[46]  David R. Liu,et al.  Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. , 2012, Methods in enzymology.

[47]  Seong-Cheol Park,et al.  The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation , 2011, International journal of molecular sciences.

[48]  Ű. Langel,et al.  Predicting cell-penetrating peptides. , 2008, Advanced drug delivery reviews.

[49]  Ű. Langel,et al.  Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. , 2007, The Biochemical journal.

[50]  P. Netti,et al.  A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[51]  Andrei N. Lupas,et al.  CLANS: a Java application for visualizing protein families based on pairwise similarity , 2004, Bioinform..

[52]  M. X. Fernandes,et al.  Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR* , 2010, The Journal of Biological Chemistry.

[53]  Nuno G. Azoia,et al.  The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. , 2013, Colloids and surfaces. B, Biointerfaces.

[54]  D. Fatouros,et al.  Personalized nanomedicine: paving the way to the practical clinical utility of genomics and nanotechnology advancements. , 2012, Advanced drug delivery reviews.

[55]  R. Brasseur,et al.  New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[56]  C. Kao,et al.  Cell-penetrating peptides derived from viral capsid proteins. , 2011, Molecular plant-microbe interactions : MPMI.

[57]  I. Alves,et al.  Membrane Crossover by Cell-Penetrating Peptides: Kinetics and Mechanisms – From Model to Cell Membrane Perturbation by Permeant Peptides , 2011 .

[58]  David R. Liu,et al.  Potent Delivery of Functional Proteins into Mammalian Cells in Vitro and in Vivo Using a Supercharged Protein , 2010, ACS chemical biology.

[59]  Priscille Brodin,et al.  A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus* , 1997, The Journal of Biological Chemistry.

[60]  M. Morris,et al.  A non-covalent peptide-based strategy for siRNA delivery. , 2007, Biochemical Society transactions.

[61]  M. Aguilar,et al.  Fast membrane association is a crucial factor in the peptide pep‐1 translocation mechanism: A kinetic study followed by surface plasmon resonance , 2010, Biopolymers.

[62]  M. Morris,et al.  Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. , 2008, Advanced drug delivery reviews.

[63]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[64]  Dominique Douguet,et al.  HELIQUEST: a web server to screen sequences with specific alpha-helical properties , 2008, Bioinform..

[65]  S. Parveen,et al.  Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[66]  A. Ulrich,et al.  Dynamical structure of the short multifunctional peptide BP100 in membranes. , 2014, Biochimica et biophysica acta.

[67]  A. Thomas,et al.  Relationships between the orientation and the structural properties of peptides and their membrane interactions. , 2008, Biochimica et biophysica acta.

[68]  J. Švitel,et al.  Optical Spectroscopic Methods for the Analysis of Biological Macromolecules , 2013 .

[69]  I. Alves,et al.  Membrane interactions of two arginine-rich peptides with different cell internalization capacities. , 2012, Biochimica et biophysica acta.

[70]  Qihao Zhang,et al.  Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application , 2012, Peptides.

[71]  J. Rossi,et al.  The Potential and Current Progress of Internalizing Molecules in Targeted Drug Delivery , 2011 .

[72]  S. Dowdy,et al.  Do cell-penetrating peptides actually "penetrate" cellular membranes? , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[73]  G. Barratt Delivery to Intracellular Targets by Nanosized Particles , 2011 .

[74]  Ana Salomé Veiga,et al.  Anticancer peptide SVS-1: efficacy precedes membrane neutralization. , 2012, Biochemistry.

[75]  S. Sagan,et al.  Cell‐penetrating peptides: 20 years later, where do we stand? , 2013, FEBS letters.

[76]  N. Santos,et al.  Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes. , 2010, Biochimica et biophysica acta.

[77]  Amos Bairoch,et al.  ViralZone: a knowledge resource to understand virus diversity , 2010, Nucleic Acids Res..

[78]  Nir Ben-Tal,et al.  Monte Carlo simulations of peptide–membrane interactions with the MCPep web server† , 2012, Nucleic Acids Res..

[79]  Alexandro Rodríguez-Rojas,et al.  Antibiotics and antibiotic resistance: a bitter fight against evolution. , 2013, International journal of medical microbiology : IJMM.

[80]  Gianluca Pollastri,et al.  CPPpred: prediction of cell penetrating peptides , 2013, Bioinform..

[81]  Irene Martín,et al.  Design, Synthesis and Characterization of a New Anionic Cell‐Penetrating Peptide: SAP(E) , 2011, Chembiochem : a European journal of chemical biology.

[82]  N. Kamei,et al.  One-month subchronic toxicity study of cell-penetrating peptides for insulin nasal delivery in rats. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[83]  Eric Vives,et al.  Cell-penetrating Peptides , 2003, The Journal of Biological Chemistry.

[84]  Shreyas Karnik,et al.  ClassAMP: A Prediction Tool for Classification of Antimicrobial Peptides , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[85]  V. Kairys,et al.  Interaction of antimicrobial peptides, BP100 and pepR, with model membrane systems as explored by Brownian dynamics simulations on a coarse-grained model. , 2012, Biopolymers.

[86]  W. Shen,et al.  Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. , 2009, Molecular pharmaceutics.

[87]  I. Neundorf,et al.  Antimicrobial peptides with cell-penetrating peptide properties and vice versa , 2011, European Biophysics Journal.

[88]  Gert Storm,et al.  Endosomal escape pathways for delivery of biologicals. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[89]  A. Bunker,et al.  Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[90]  David Andreu,et al.  AMPA: an automated web server for prediction of protein antimicrobial regions , 2012, Bioinform..

[91]  E. Hildt,et al.  Novel cell permeable motif derived from the PreS2-domain of hepatitis-B virus surface antigens , 2000, Gene Therapy.

[92]  U. Haberkorn,et al.  The pharmacokinetics of cell-penetrating peptides. , 2010, Molecular pharmaceutics.

[93]  S. Read,et al.  Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin , 2010, Vision Research.

[94]  Margarida Bastos,et al.  Role of lipids in the interaction of antimicrobial peptides with membranes. , 2012, Progress in lipid research.

[95]  R. Mohana-Borges,et al.  Intracellular Nucleic Acid Delivery by the Supercharged Dengue Virus Capsid Protein , 2013, PloS one.

[96]  Gajendra P. S. Raghava,et al.  Analysis and prediction of antibacterial peptides , 2007, BMC Bioinformatics.

[97]  B. Lebleu,et al.  Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. , 2006, Biochimica et biophysica acta.

[98]  R. Brasseur,et al.  Happy birthday cell penetrating peptides: already 20 years. , 2010, Biochimica et biophysica acta.

[99]  K. Peremans,et al.  Chemical-Functional Diversity in Cell-Penetrating Peptides , 2013, PloS one.

[100]  I. Alves,et al.  Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. , 2011, Biochimica et biophysica acta.

[101]  Xue-Qing Zhang,et al.  Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. , 2012, Advanced drug delivery reviews.

[102]  M. Hong,et al.  Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes. , 2011, The journal of physical chemistry. B.

[103]  Gajendra P. S. Raghava,et al.  AntiBP2: improved version of antibacterial peptide prediction , 2010, BMC Bioinformatics.

[104]  N. Greenfield Applications of circular dichroism in protein and peptide analysis , 1999 .

[105]  A. Phelan,et al.  Intercellular delivery of functional p53 by the herpesvirus protein VP22 , 1998, Nature Biotechnology.

[106]  M. Morris,et al.  The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. , 2007, Biochemical and biophysical research communications.

[107]  Richard J Kuhn,et al.  Structural proteomics of dengue virus. , 2008, Current opinion in microbiology.

[108]  T. Nylander,et al.  Model cell membranes: discerning lipid and protein contributions in shaping the cell. , 2014, Advances in colloid and interface science.

[109]  Gajendra P.S. Raghava,et al.  PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. , 2007, Protein and peptide letters.

[110]  Steven F Dowdy,et al.  Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. , 2007, Advanced drug delivery reviews.

[111]  A. Prochiantz,et al.  The third helix of the Antennapedia homeodomain translocates through biological membranes. , 1994, The Journal of biological chemistry.

[112]  R. Salvayre,et al.  Colloidal systems for drug delivery: from design to therapy. , 2012, Trends in biotechnology.

[113]  Ülo Langel,et al.  Cell entry and antimicrobial properties of eukaryotic cell‐ penetrating peptides , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[114]  H. Harashima,et al.  Learning from the Viral Journey: How to Enter Cells and How to Overcome Intracellular Barriers to Reach the Nucleus , 2009, The AAPS Journal.

[115]  Mauro Giacca,et al.  Virus-mediated gene delivery for human gene therapy. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[116]  G. Divita,et al.  Interactions of amphipathic CPPs with model membranes. , 2011, Methods in molecular biology.

[117]  M. Castanho,et al.  From antimicrobial to anticancer peptides. A review , 2013, Front. Microbiol..

[118]  R. Patlolla,et al.  (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[119]  I. Mäger,et al.  In vivo biodistribution and efficacy of peptide mediated delivery. , 2010, Trends in pharmacological sciences.

[120]  M. Morris,et al.  A peptide carrier for the delivery of biologically active proteins into mammalian cells , 2001, Nature Biotechnology.

[121]  B. Davidson,et al.  Transvascular delivery of small interfering RNA to the central nervous system , 2007, Nature.

[122]  R. Epand,et al.  Membrane-active peptides and the clustering of anionic lipids. , 2012, Biophysical journal.

[123]  I. Alves,et al.  Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells. , 2010, Biochimica et biophysica acta.

[124]  D. Craik,et al.  The Future of Peptide‐based Drugs , 2013, Chemical biology & drug design.

[125]  Ari Helenius,et al.  How Viruses Enter Animal Cells , 2004, Science.

[126]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[127]  H. Moulton,et al.  Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. , 2010, Biochimica et biophysica acta.

[128]  James D. Thompson Clinical development of synthetic siRNA therapeutics , 2013 .

[129]  N. Santos,et al.  Interaction of peptides with biomembranes assessed by potential‐sensitive fluorescent probes , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[130]  Jo Wixon,et al.  Gene therapy clinical trials worldwide to 2007—an update , 2007, The journal of gene medicine.

[131]  K. Pattabiraman,et al.  The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[132]  A. Jones,et al.  Cell entry of cell penetrating peptides: tales of tails wagging dogs. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[133]  Marco M. Domingues,et al.  What can light scattering spectroscopy do for membrane‐active peptide studies? , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[134]  Xiaowei Zhao,et al.  LAMP: A Database Linking Antimicrobial Peptides , 2013, PloS one.

[135]  Wei Zhang,et al.  Structure of Dengue Virus Implications for Flavivirus Organization, Maturation, and Fusion , 2002, Cell.

[136]  R. Clarke The dipole potential of phospholipid membranes and methods for its detection. , 2001, Advances in colloid and interface science.

[137]  P. O'shea,et al.  Intermolecular interactions with/within cell membranes and the trinity of membrane potentials: kinetics and imaging. , 2003, Biochemical Society transactions.

[138]  Carl O. Pabo,et al.  Cellular uptake of the tat protein from human immunodeficiency virus , 1988, Cell.

[139]  Ernst Wagner,et al.  Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[140]  Shreyas Karnik,et al.  CAMP: a useful resource for research on antimicrobial peptides , 2009, Nucleic Acids Res..

[141]  P. Fromherz,et al.  Orientation of Hemicyanine Dye in Lipid Membrane Measured by Fluorescence Interferometry on a Silicon Chip , 2001 .

[142]  Ű. Langel,et al.  Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. , 2010, Biochimica et biophysica acta.

[143]  H. McLeod,et al.  The kinetics and tissue distribution of protein transduction in mice. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[144]  K. Hahm,et al.  The thin line between cell‐penetrating and antimicrobial peptides: the case of Pep‐1 and Pep‐1‐K , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[145]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[146]  Shengrong Guo,et al.  Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[147]  Azam Bolhassani,et al.  Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. , 2011, Biochimica et biophysica acta.

[148]  Octávio L. Franco,et al.  Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides , 2013, Front. Microbiol..

[149]  Gajendra P. S. Raghava,et al.  CPPsite: a curated database of cell penetrating peptides , 2012, Database J. Biol. Databases Curation.

[150]  R. Meloen,et al.  Application, efficiency and cargo-dependence of transport peptides , 2005 .

[151]  M. Morris,et al.  Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. , 2003, Nucleic acids research.

[152]  Yifan Jiang,et al.  Curb challenges of the "Trojan Horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. , 2013, Advanced drug delivery reviews.

[153]  Vladimir P Torchilin,et al.  Cell-penetrating peptides: breaking through to the other side. , 2012, Trends in molecular medicine.

[154]  F. Milletti,et al.  Cell-penetrating peptides: classes, origin, and current landscape. , 2012, Drug discovery today.

[155]  M. C. Cardoso,et al.  Cell-Penetrating Peptides Uptake, Toxicity, and Applications , 2009 .

[156]  Huixia Lv,et al.  Cell Penetrating Peptides in the Delivery of Biopharmaceuticals , 2012, Biomolecules.

[157]  David R. Liu,et al.  Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. , 2012, Chemistry & biology.

[158]  T. Borsello,et al.  Cell Permeable Peptides: A Promising Tool to Deliver Neuroprotective Agents in the Brain , 2010, Pharmaceuticals.

[159]  Y. Yoshioka,et al.  Comparative study on transduction and toxicity of protein transduction domains , 2008, British journal of pharmacology.

[160]  M. Mano,et al.  Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems , 2010, Pharmaceuticals.

[161]  H. M. Nielsen,et al.  Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. , 2013, Biochimica et biophysica acta.