A Kernel Sparse Representation Based Framework for Monitoring Nonlinear Multi-Mode Process

[1]  Patricio A. Vela,et al.  A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm , 2012, Expert Syst. Appl..

[2]  S. Qin,et al.  Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models , 2008 .

[3]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[4]  Henrik Saxén,et al.  Identification of switching linear systems using self-organizing models with application to silicon prediction in hot metal , 2016, Appl. Soft Comput..

[5]  Jie Yu,et al.  Localized Fisher discriminant analysis based complex chemical process monitoring , 2011 .

[6]  Mengling Wang,et al.  Dynamic process monitoring using adaptive local outlier factor , 2013 .

[7]  Chuanhou Gao,et al.  Data-Driven Time Discrete Models for Dynamic Prediction of the Hot Metal Silicon Content in the Blast Furnace—A Review , 2013, IEEE Transactions on Industrial Informatics.

[8]  Ahmet Palazoglu,et al.  Process pattern construction and multi-mode monitoring , 2012 .

[9]  Lei Xie,et al.  Shrinking principal component analysis for enhanced process monitoring and fault isolation , 2013 .

[10]  Erik Vanhatalo,et al.  Multivariate process monitoring of an experimental blast furnace , 2010, Qual. Reliab. Eng. Int..

[11]  Jie Yu,et al.  A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis , 2012 .

[12]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Dale E. Seborg,et al.  Fault Detection Using Canonical Variate Analysis , 2004 .

[14]  Ahmet Palazoglu,et al.  An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding , 2013 .

[15]  Zhi-huan Song,et al.  Online monitoring of nonlinear multiple mode processes based on adaptive local model approach , 2008 .

[16]  Zhiqiang Ge,et al.  Multimode process monitoring based on Bayesian method , 2009 .

[17]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[18]  Hongbo Shi,et al.  Multimode process monitoring using improved dynamic neighborhood preserving embedding , 2014 .

[19]  Zhi-huan Song,et al.  Mixture Bayesian regularization method of PPCA for multimode process monitoring , 2010 .

[20]  Chenglin Wen,et al.  Fault Detection Using Random Projections and k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes , 2015, IEEE Transactions on Semiconductor Manufacturing.

[21]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[22]  Zhiqiang Ge,et al.  Improved kernel PCA-based monitoring approach for nonlinear processes , 2009 .

[23]  Hong Zhou,et al.  Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares , 2010, IEEE Transactions on Industrial Informatics.