Using N‐SCAN or TWINSCAN to Predict Gene Structures in Genomic DNA Sequences

N‐SCAN is a gene‐prediction system that combines the methods of ab initio predictors like GENSCAN with information derived from genome comparison. It is the latest in the TWINSCAN series of programs. This unit describes the use of N‐SCAN to identify gene structures in eukaryotic genomic sequences. Protocols for using N‐SCAN through its Web interface and from the command line in a Linux environment are provided. Detailed discussion about the appropriate parameter settings, input‐sequence processing, and choice of genome for comparison are included. Curr. Protoc. Bioinform. 20:4.8.1‐4.8.16. © 2007 by John Wiley & Sons, Inc.

[1]  Samuel S. Gross,et al.  Begin at the beginning: predicting genes with 5' UTRs. , 2005, Genome research.

[2]  Michael R. Brent,et al.  Eval: A software package for analysis of genome annotations , 2003, BMC Bioinformatics.

[3]  Paul Levi,et al.  GENIO/scan - EST Guided Identification of Genes in Human Genomic DNA , 1998, German Conference on Bioinformatics.

[4]  Ian Korf,et al.  Integrating genomic homology into gene structure prediction , 2001, ISMB.

[5]  Steven Salzberg,et al.  JIGSAW: integration of multiple sources of evidence for gene prediction , 2005, Bioinform..

[6]  Andreas Prlic,et al.  Ensembl 2007 , 2006, Nucleic Acids Res..

[7]  R. Guigó,et al.  An assessment of gene prediction accuracy in large DNA sequences. , 2000, Genome research.

[8]  B. Morgenstern,et al.  AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome , 2006, Genome Biology.

[9]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[10]  Michael R. Brent,et al.  Using Multiple Alignments to Improve Gene Prediction , 2005, RECOMB.

[11]  M. Brent,et al.  Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[13]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[14]  Jonathan E. Allen,et al.  Computational gene prediction using multiple sources of evidence. , 2003, Genome research.

[15]  L. Pachter,et al.  SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model. , 2003, Genome research.

[16]  M. Brent,et al.  Leveraging the mouse genome for gene prediction in human: from whole-genome shotgun reads to a global synteny map. , 2003, Genome research.

[17]  M. Brent,et al.  Iterative gene prediction and pseudogene removal improves genome annotation. , 2006, Genome research.

[18]  Chaochun Wei,et al.  Using ESTs to improve the accuracy of de novo gene prediction , 2006, BMC Bioinformatics.

[19]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[20]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[21]  E. Birney,et al.  EGASP: the human ENCODE Genome Annotation Assessment Project , 2006, Genome Biology.

[22]  G. Weinstock,et al.  Creating a honey bee consensus gene set , 2007, Genome Biology.

[23]  R. Guigó,et al.  Comparative gene prediction in human and mouse. , 2003, Genome research.