Hypernetwork science via high-order hypergraph walks

We propose high-order hypergraph walks as a framework to generalize graph-based network science techniques to hypergraphs. Edge incidence in hypergraphs is quantitative, yielding hypergraph walks with both length and width. Graph methods which then generalize to hypergraphs include connected component analyses, graph distance-based metrics such as closeness centrality, and motif-based measures such as clustering coefficients. We apply high-order analogs of these methods to real world hypernetworks, and show they reveal nuanced and interpretable structure that cannot be detected by graph-based methods. Lastly, we apply three generative models to the data and find that basic hypergraph properties, such as density and degree distributions, do not necessarily control these new structural measurements. Our work demonstrates how analyses of hypergraph-structured data are richer when utilizing tools tailored to capture hypergraph-native phenomena, and suggests one possible avenue towards that end.

[1]  Noga Alon,et al.  Transversal numbers of uniform hypergraphs , 1990, Graphs Comb..

[2]  Marianna Bolla,et al.  Spectra, Euclidean representations and clusterings of hypergraphs , 1993, Discret. Math..

[3]  J. Forrest,et al.  The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks , 2015, Scientific reports.

[4]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.

[5]  Philip S. Chodrow,et al.  Configuration Models of Random Hypergraphs and their Applications , 2019, J. Complex Networks.

[6]  Chris H. Q. Ding,et al.  Symmetric Nonnegative Matrix Factorization for Graph Clustering , 2012, SDM.

[7]  Mihyun Kang,et al.  Threshold and Hitting Time for High-Order Connectedness in Random Hypergraphs , 2016, Electron. J. Comb..

[8]  Benjamin J Raphael,et al.  Random Walks on Hypergraphs with Edge-Dependent Vertex Weights , 2019, ICML.

[9]  Irit Dinur,et al.  The Hardness of 3-Uniform Hypergraph Coloring , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[10]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[11]  Kai Wang,et al.  Vertex Priority Based Butterfly Counting for Large-scale Bipartite Networks , 2018, Proc. VLDB Endow..

[12]  Mihyun Kang,et al.  Subcritical random hypergraphs, high-order components, and hypertrees , 2018, ANALCO.

[13]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[14]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[15]  P. McCullagh Analysis of Ordinal Categorical Data , 1985 .

[16]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[17]  J. Rodri´guez On the Laplacian Eigenvalues and Metric Parameters of Hypergraphs , 2002 .

[18]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[19]  Steve Kirkland,et al.  Two-mode networks exhibiting data loss , 2018, J. Complex Networks.

[20]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[21]  Hiêp Hàn,et al.  Dirac-type results for loose Hamilton cycles in uniform hypergraphs , 2010, J. Comb. Theory, Ser. B.

[22]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[23]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[24]  Xin-Yun Zhu,et al.  Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs , 2016, Scientific reports.

[25]  Gyula Y. Katona,et al.  Hamiltonian chains in hypergraphs , 2006, J. Graph Theory.

[26]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[27]  Philip S. Chodrow Configuration Models of Random Hypergraphs and their Applications , 2019, ArXiv.

[28]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[29]  Linyuan Lu,et al.  High-Ordered Random Walks and Generalized Laplacians on Hypergraphs , 2011, WAW.

[30]  R. N. Naik On Intersection Graphs of Graphs and Hypergraphs: A Survey , 2018 .

[31]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[32]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[33]  Fan Chung Graham The Laplacian of a Hypergraph , 1992, Expanding Graphs.

[34]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[35]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[36]  Garry Robins,et al.  Small Worlds Among Interlocking Directors: Network Structure and Distance in Bipartite Graphs , 2004, Comput. Math. Organ. Theory.

[37]  Mark Muldoon,et al.  The Small World Network Structure of Boards of Directors , 2004 .

[38]  Joshua N. Cooper,et al.  Spectra of Uniform Hypergraphs , 2011, 1106.4856.

[39]  Martin Schmidt,et al.  Functorial Approach to Graph and Hypergraph Theory , 2019 .

[40]  B. Bollobás The evolution of random graphs , 1984 .

[41]  Gemma C. Garriga,et al.  Banded structure in binary matrices , 2008, Knowledge and Information Systems.

[42]  M. Barber Modularity and community detection in bipartite networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Srikanta Tirthapura,et al.  Butterfly Counting in Bipartite Networks , 2017, KDD.

[44]  Bogumil Kaminski,et al.  Clustering via hypergraph modularity , 2018, PloS one.

[45]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Guido Caldarelli,et al.  Random hypergraphs and their applications , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  R. N. Naik Recent Advances on Intersection Graphs of Hypergraphs: A Survey , 2018, 1809.08472.

[48]  Cliff Joslyn,et al.  A Topological Approach to Representational Data Models , 2018, HCI.

[49]  Cliff Joslyn,et al.  Chapel HyperGraph Library (CHGL) , 2018, 2018 IEEE High Performance extreme Computing Conference (HPEC).

[50]  Yury Person,et al.  On Spanning Structures in Random Hypergraphs , 2015, Electron. Notes Discret. Math..

[51]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[52]  Tamara G. Kolda,et al.  A Scalable Generative Graph Model with Community Structure , 2013, SIAM J. Sci. Comput..

[53]  Dustin Arendt,et al.  High Performance Hypergraph Analytics of Domain Name System Relationships , 2019 .

[54]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Xavier Pérez-Giménez,et al.  Subhypergraphs in non-uniform random hypergraphs , 2017, Internet Math..

[56]  Martin G. Everett,et al.  The dual-projection approach for two-mode networks , 2013, Soc. Networks.

[57]  Gyula O. H. Katona,et al.  Extremal Problems for Hypergraphs , 1975 .

[58]  Tamara G. Kolda,et al.  Community structure and scale-free collections of Erdös-Rényi graphs , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Tamara G. Kolda,et al.  Measuring and modeling bipartite graphs with community structure , 2016, J. Complex Networks.

[60]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2004, Nucleic Acids Res..

[61]  Tatsuya Akutsu,et al.  On the degree distribution of projected networks mapped from bipartite networks , 2011 .

[62]  A. J. Alvarez-Socorro,et al.  Eigencentrality based on dissimilarity measures reveals central nodes in complex networks , 2015, Scientific Reports.

[63]  Luay Nakhleh,et al.  Properties of metabolic graphs: biological organization or representation artifacts? , 2011, BMC Bioinformatics.

[64]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[65]  Yannick Rochat,et al.  Closeness Centrality Extended to Unconnected Graphs: the Harmonic Centrality Index , 2009 .

[66]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[67]  R.W.R. Darling,et al.  Structure of large random hypergraphs , 2005 .

[68]  Jean-Claude Bermond,et al.  Line graphs of hypergraphs I , 1977, Discret. Math..

[69]  Mihyun Kang,et al.  Evolution of high-order connected components in random hypergraphs , 2015, Electron. Notes Discret. Math..

[70]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[71]  Irit Dinur,et al.  The Hardness of 3-Uniform Hypergraph Coloring , 2005, Comb..

[72]  Matthieu Latapy,et al.  Basic notions for the analysis of large two-mode networks , 2008, Soc. Networks.

[73]  Joel Levine CHAPTER 17 – A STUDY OF INTERLOCKING DIRECTORATES: VITAL CONCEPTS OF ORGANIZATION , 1979 .

[74]  Ali Pinar,et al.  Peeling Bipartite Networks for Dense Subgraph Discovery , 2016, WSDM.

[75]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality and clustering in complex hyper-networks , 2006 .

[76]  Daniel B. Larremore,et al.  Efficiently inferring community structure in bipartite networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Jianfang Wang,et al.  Paths and cycles of hypergraphs , 1999 .

[79]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[80]  Navin M. Singhi,et al.  Intersection Graphs of k-uniform Linear Hypergraphs , 1982, Eur. J. Comb..

[81]  David I. Spivak,et al.  Hypergraph Categories , 2018, Journal of Pure and Applied Algebra.

[82]  Benny Sudakov,et al.  Approximate coloring of uniform hypergraphs , 1998, J. Algorithms.

[83]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[84]  Tore Opsahl Triadic closure in two-mode networks: Redefining the global and local clustering coefficients , 2013, Soc. Networks.

[85]  D. A. Waller,et al.  A category-theoretical approach to hypergraphs , 1980 .