Characterizing the Tails of Degree Distributions in Real-World Networks

[1]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[2]  Joel Nishimura,et al.  Configuring Random Graph Models with Fixed Degree Sequences , 2016, SIAM Rev..

[3]  Sidney I. Resnick,et al.  On a Minimum Distance Procedure for Threshold Selection in Tail Analysis , 2018, SIAM J. Math. Data Sci..

[4]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[6]  D. Mason Laws of Large Numbers for Sums of Extreme Values , 1982 .

[7]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[8]  Kate E. Jones,et al.  Body mass of late Quaternary mammals , 2003 .

[9]  A. Clauset,et al.  On the Frequency of Severe Terrorist Events , 2006, physics/0606007.

[10]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[11]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[12]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[13]  Yannick Malevergne,et al.  Empirical distributions of stock returns: between the stretched exponential and the power law? , 2003, physics/0305089.

[14]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[15]  Peter Hall,et al.  Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .

[16]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[17]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Michael Mitzenmacher,et al.  Editorial: The Future of Power Law Research , 2005, Internet Math..

[19]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[20]  J M Carlson,et al.  Highly optimized tolerance: a mechanism for power laws in designed systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Gipsi Lima-Mendez,et al.  The powerful law of the power law and other myths in network biology. , 2009, Molecular bioSystems.

[22]  Yongcheng Qi,et al.  Bootstrap and empirical likelihood methods in extremes , 2008 .

[23]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[24]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Redner Citation statistics from 110 years of physical review , 2005, physics/0506056.

[26]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[27]  Michael Golosovsky,et al.  Power-law citation distributions are not scale-free , 2017, Physical review. E.

[28]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[32]  Dmitri V. Krioukov,et al.  Scale-free Networks Well Done , 2018, Physical Review Research.

[33]  David F. Gleich,et al.  Revisiting Power-law Distributions in Spectra of Real World Networks , 2017, KDD.

[34]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[35]  Aaron Clauset,et al.  Characterizing the structural diversity of complex networks across domains , 2017, ArXiv.

[36]  T. Nakagawa,et al.  The Discrete Weibull Distribution , 1975, IEEE Transactions on Reliability.

[37]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Sang Hoon Lee,et al.  Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits , 2014, bioRxiv.

[39]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[41]  Marián Boguñá,et al.  Self-similarity of complex networks and hidden metric spaces , 2007, Physical review letters.

[42]  Hiroki Sayama,et al.  Invasion of Cooperation in Scale-Free Networks: Accumulated versus Average Payoffs , 2017, Artificial Life.

[43]  Walter Willinger,et al.  Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications , 2005, Internet Math..

[44]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[45]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[46]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[47]  A. Clauset Trends and fluctuations in the severity of interstate wars , 2018, Science Advances.

[48]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[49]  Edward Ott,et al.  Emergence of synchronization in complex networks of interacting dynamical systems , 2006 .

[50]  Michael Small,et al.  Exactly scale-free scale-free networks , 2013, ArXiv.

[51]  Edward Ott,et al.  Synchronization in large directed networks of coupled phase oscillators. , 2005, Chaos.

[52]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[53]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Petter Holme,et al.  Currency and commodity metabolites: their identification and relation to the modularity of metabolic networks. , 2006, IET systems biology.

[55]  Walter Willinger,et al.  Mathematics and the Internet: A Source of Enormous Confusion and Great Potential , 2009, The Best Writing on Mathematics 2010.

[56]  M. Porter,et al.  Critical Truths About Power Laws , 2012, Science.

[57]  J. David Singer,et al.  Resort to Arms: International and Civil Wars, 1816-1980 , 1982 .

[58]  R. Tanaka,et al.  Scale-rich metabolic networks. , 2005, Physical review letters.

[59]  Detlef Weigel,et al.  Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation , 2016, PLoS biology.

[60]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Tweney Error and the growth of experimental knowledge , 1998 .

[62]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[63]  Hawoong Jeong,et al.  Classification of scale-free networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Turcotte,et al.  Fractality and Self-Organized Criticality of Wars , 1998 .

[65]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Michelle Girvan,et al.  Optimal design, robustness, and risk aversion. , 2002, Physical review letters.

[67]  M. E. J. Newman,et al.  The first-mover advantage in scientific publication , 2008, 0809.0522.

[68]  S. Resnick,et al.  On asymptotic normality of the hill estimator , 1998 .

[69]  Brian W. Rogers,et al.  Meeting Strangers and Friends of Friends: How Random are Social Networks? , 2007 .

[70]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[71]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Matt J. Keeling,et al.  Testing the hypothesis of preferential attachment in social network formation , 2015, EPJ Data Science.

[73]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[74]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[75]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[76]  Petter Holme,et al.  Radial structure of the Internet , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[77]  D. Alderson,et al.  Diversity of graphs with highly variable connectivity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Alessandro Vespignani,et al.  Epidemic dynamics in finite size scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Tamara G. Kolda,et al.  An in-depth analysis of stochastic Kronecker graphs , 2011, JACM.

[80]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[81]  D. Gamermann,et al.  A comprehensive statistical study of metabolic and protein–protein interaction network properties , 2017, Physica A: Statistical Mechanics and its Applications.

[82]  Fan Chung Graham,et al.  A Random Graph Model for Power Law Graphs , 2001, Exp. Math..

[83]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[84]  Béla Bollobás,et al.  Coupling Scale-Free and Classical Random Graphs , 2004, Internet Math..

[85]  Laura Sacerdote,et al.  Scale-free behavior of networks with the copresence of preferential and uniform attachment rules , 2017, 1704.08597.

[86]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[88]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[89]  Alice Payne Hackett 70 years of best sellers, 1895-1965 , 1967 .

[90]  V. Paxson,et al.  WHERE MATHEMATICS MEETS THE INTERNET , 1998 .

[91]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[92]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[93]  Christian Borgs,et al.  Competition-Induced Preferential Attachment , 2004, ICALP.

[94]  Raya Khanin,et al.  How Scale-Free Are Biological Networks , 2006, J. Comput. Biol..

[95]  Aravind Srinivasan,et al.  The Effect of Random Edge Removal on Network Degree Sequence , 2012, Electron. J. Comb..

[96]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[97]  E. Ziv,et al.  Inferring network mechanisms: the Drosophila melanogaster protein interaction network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.