A generalized neighborhood for cellular automata

Abstract A generalized neighborhood for d-dimensional cellular automata is introduced; it spans the range from von Neumann's to Moore's neighborhood using a parameter which represents the dimension of hypercubes connecting neighboring cells. Finite hypercubes and hypertoruses are studied, and the number of neighbors on their boundary and the number of connections between cells are calculated. We come to finite constructs when practically implementing computations of cellular automata. Enumerations of cells, neighbors and connections are considered and implemented in ad-hoc software which generates a canvas of hypercube and hypertorus models in the form of a Petri net. A cell model can be replaced while the underlying canvas of connections remains the same. The generalized neighborhood is extended to include a concept of radius; the number of neighbors is calculated for infinite and finite lattices. For diamond-shaped neighborhoods, a sequence is obtained whose partial sums equal Delannoy numbers.

[1]  Nazim Fatès,et al.  A Guided Tour of Asynchronous Cellular Automata , 2013, J. Cell. Autom..

[2]  Enrico Formenti,et al.  Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues , 2014, Theor. Comput. Sci..

[3]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[4]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .

[5]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[6]  Dmitry A. Zaitsev,et al.  Sleptsov Nets Run Fast , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[7]  P. L. Chebyshev,et al.  Oeuvres de P. L. Tchebychef , 1963 .

[8]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[9]  Stephan Mertens,et al.  Counting lattice animals in high dimensions , 2011, 1106.1078.

[10]  Véronique Terrier Low complexity classes of multidimensional cellular automata , 2006, Theor. Comput. Sci..

[11]  Cyril Banderier,et al.  Why Delannoy numbers? , 2004, ArXiv.

[12]  Dmitry A. Zaitsev Universality in Infinite Petri Nets , 2015, MCU.

[13]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[14]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[15]  Abhishek Dutta,et al.  A generalized cellular automata approach to modeling first order enzyme kinetics , 2015 .

[16]  Wilson A. Sutherland,et al.  Introduction to Metric and Topological Spaces , 1975 .

[17]  Monika Heiner,et al.  Colouring Space - A Coloured Framework for Spatial Modelling in Systems Biology , 2013, Petri Nets.

[18]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[19]  Thomas Bäck,et al.  Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior , 2005, GECCO '05.