Auxins in the development of an arbuscular mycorrhizal symbiosis in maize.

[1]  J. Ludwig-Müller,et al.  A Novel Auxin Conjugate Hydrolase from Wheat with Substrate Specificity for Longer Side-Chain Auxin Amide Conjugates1 , 2004, Plant Physiology.

[2]  John V. Smalley,et al.  A Molecular Phylogenomic Analysis of the ILR1-Like Family of IAA Amidohydrolase Genes , 2003, Comparative and functional genomics.

[3]  Vipul Sharma,et al.  ILR1 and sILR1 IAA amidohydrolase homologs differ in expression pattern and substrate specificity , 2003, Plant Growth Regulation.

[4]  B. Hause,et al.  Review Paper: Arbuscular Mycorrhiza: Biological, Chemical, and Molecular Aspects , 2003, Journal of Chemical Ecology.

[5]  B. Hause,et al.  Induction of Jasmonate Biosynthesis in Arbuscular Mycorrhizal Barley Roots1,2 , 2002, Plant Physiology.

[6]  Y. Eshed,et al.  Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. , 2002, The New phytologist.

[7]  L. Acerbi,et al.  IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development , 2000, Plant and Soil.

[8]  D. Tagu,et al.  The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses , 2000, Journal of Plant Growth Regulation.

[9]  J. Ludwig-Müller,et al.  AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis , 2000 .

[10]  M. J. Harrison,et al.  MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. , 1999, Annual review of plant physiology and plant molecular biology.

[11]  G. Gay,et al.  The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. , 1998, The New phytologist.

[12]  G. Sandberg,et al.  Metabolism of indole-3-acetic acid in Arabidopsis. , 1998, Plant physiology.

[13]  J. Ludwig-Müller,et al.  Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices , 1997 .

[14]  B. Tisserant,et al.  Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia , 1996 .

[15]  V. Gianinazzi-Pearson,et al.  Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis. , 1996, The Plant cell.

[16]  J. Ludwig-Müller,et al.  Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during infection with clubroot disease. , 1996 .

[17]  Masato Katayama,et al.  Synthesis and Biological Activities of Substituted 4,4,4-Trifluoro-3-(indoIe-3-)butyric Acids, Novel Fluorinated Plant Growth Regulators. , 1996, Bioscience, biotechnology and biochemistry.

[18]  J. Ludwig-Müller,et al.  The in vitro biosynthesis of indole-3-butyric acid in maize , 1995 .

[19]  Katsuya Kato,et al.  (S)-(+)-4,4,4-Trifluoro-3-(indole-3-)butyric acid, a novel fluorinated plant growth regulator , 1995, Experientia.

[20]  B. Sundberg,et al.  A Novel Metabolic Pathway for Indole-3-Acetic Acid in Apical Shoots of Populus tremula (L.) x Populus tremuloides (Michx.) , 1994, Plant physiology.

[21]  J. Ludwig-Müller,et al.  Indole-3-butyric acid in Arabidopsis thaliana , 1993, Plant Growth Regulation.

[22]  J. Ludwig-Müller,et al.  Indole-3-butyric acid in Arabidopsis thaliana , 1993, Plant Growth Regulation.

[23]  J. Cohen,et al.  Measurement of indolebutyric Acid in plant tissues by isotope dilution gas chromatography-mass spectrometry analysis. , 1992, Plant physiology.

[24]  H. Bothe,et al.  Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters , 1991 .

[25]  J. Ludwig-Müller,et al.  Occurrence and in Vivo Biosynthesis of Indole-3-Butyric Acid in Corn (Zea mays L.). , 1991, Plant physiology.

[26]  J. Cohen,et al.  A Rapid and Simple Procedure for Purification of Indole-3-Acetic Acid Prior to GC-SIM-MS Analysis. , 1988, Plant physiology.

[27]  M. Noma,et al.  Endogenous indole-3-acetic Acid in the stem of tobacco in relation to flower neoformation as measured by mass spectroscopic assay. , 1984, Plant physiology.

[28]  G. Safir,et al.  Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition , 1982, Planta.

[29]  J. Ludwig-Müller Hormonal Balance in Plants During Colonization by Mycorrhizal Fungi , 2000 .

[30]  Y. Kapulnik,et al.  Arbuscular Mycorrhizas: Physiology and Function , 2000, Springer Netherlands.

[31]  P. J. Davies Plant hormones : physiology, biochemistry and molecular biology , 1995 .

[32]  H. Bothe,et al.  Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis , 1994 .

[33]  H. Bothe,et al.  Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.) , 1993 .

[34]  V. Gianinazzi-Pearson,et al.  Physiological Interactions Between Symbionts in Vesicular-Arbuscular Mycorrhizal Plants , 1988 .

[35]  J. Slovin,et al.  C(6)-[benzene ring]-indole-3-acetic Acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic Acid in plants. , 1986, Plant physiology.

[36]  Jerry D. Cohen,et al.  Convenient apparatus for the generation of small amounts of diazomethane , 1984 .

[37]  H. Dehne Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens , 1982 .

[38]  John E. E. Ebinger Populus tremuloides Michx. , 1982 .

[39]  G. Michael Eschrich, W.: Straßburger's Kleines Botanisches Praktikum für Anfänger. 17. völlig neu bearb. Auflage. Gustav Fischer Verlag Stuttgart, New York, 1976. 218 Seiten, 58 Abbildungen, DM 24,‐ , 1977 .