Inverse optimal control with polynomial optimization
暂无分享,去创建一个
[1] Vladimir Vapnik,et al. An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.
[2] P. Kokotovic,et al. Inverse Optimality in Robust Stabilization , 1996 .
[3] Johannes P. Schlöder,et al. Estimating Parameters in Optimal Control Problems , 2012, SIAM J. Sci. Comput..
[4] B. Anderson,et al. Nonlinear regulator theory and an inverse optimal control problem , 1973 .
[5] J. Andrew Bagnell,et al. Maximum margin planning , 2006, ICML.
[6] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[7] Timothy Bretl,et al. A convex approach to inverse optimal control and its application to modeling human locomotion , 2012, 2012 IEEE International Conference on Robotics and Automation.
[8] Emmanuel Trélat,et al. Robust optimal stabilization of the Brockett integrator via a hybrid feedback , 2005, Math. Control. Signals Syst..
[9] S. Kahne,et al. Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.
[10] Jean-Paul Gauthier,et al. How humans fly , 2013 .
[11] R. E. Kalman,et al. When Is a Linear Control System Optimal , 1964 .
[12] Jean-Paul Laumond,et al. An Optimality Principle Governing Human Walking , 2008, IEEE Transactions on Robotics.
[13] Paolo Mason,et al. On Inverse Optimal Control Problems of Human Locomotion: Stability and Robustness of the Minimizers , 2013 .
[14] Ruggero Frezza,et al. Linear Optimal Control Problems and Quadratic Cost Functions Estimation , 2004 .
[15] G. Darboux,et al. Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques Du Calcul Infinitésimal , 2001 .
[16] David Saunders. Thirty years of the inverse problem in the calculus of variations , 2010 .
[17] Michael Athans,et al. Optimal Control , 1966 .
[18] Michael A Babyak,et al. What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models , 2004, Psychosomatic medicine.
[19] A. Jameson,et al. Inverse Problem of Linear Optimal Control , 1973 .
[20] Pieter Abbeel,et al. Apprenticeship learning via inverse reinforcement learning , 2004, ICML.
[21] Stephen P. Boyd,et al. Imputing a convex objective function , 2011, 2011 IEEE International Symposium on Intelligent Control.
[22] Mary Ellen Soper. What You See May Not Be What You Get:: Errors in Online Bibliographic Records for Serials , 1990 .
[23] B. Anderson,et al. Linear Optimal Control , 1971 .
[24] Jean B. Lasserre. Inverse polynomial optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.
[25] Jean-Paul Laumond,et al. From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.
[26] F. Thau. On the inverse optimum control problem for a class of nonlinear autonomous systems , 1967, IEEE Transactions on Automatic Control.
[27] Enzo Tonti,et al. Variational formulation for every nonlinear problem , 1984 .
[28] Takao Fujii,et al. A complete optimally condition in the inverse problem of optimal control , 1984, The 23rd IEEE Conference on Decision and Control.
[29] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.
[30] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[31] J. Casti. On the general inverse problem of optimal control theory , 1980 .
[32] J. Douglas. Solution of the Inverse Problem of the Calculus of Variations. , 1939, Proceedings of the National Academy of Sciences of the United States of America.
[33] Johan Löfberg,et al. Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.
[34] Victor M. Becerra,et al. Optimal control , 2008, Scholarpedia.
[35] Emmanuel Trélat,et al. Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..