Toric Codes over Finite Fields

Abstract.In this note, a class of error-correcting codes is associated to a toric variety defined over a finite field q, analogous to the class of AG codes associated to a curve. For small q, many of these codes have parameters beating the Gilbert-Varshamov bound. In fact, using toric codes, we construct a (n,k,d)=(49,11,28) code over 8, which is better than any other known code listed in Brouwer’s tables for that n, k and q. We give upper and lower bounds on the minimum distance. We conclude with a discussion of some decoding methods. Many examples are given throughout.

[1]  Tadao Oda Convex bodies and algebraic geometry , 1987 .

[2]  J. Fitzgerald,et al.  Decoding Affine Variety Codes Using Gröbner Bases , 1998, Des. Codes Cryptogr..

[3]  Johan P. Hansen,et al.  Toric Surfaces and Error-correcting Codes , 2000 .

[4]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[5]  Johan P. Hansen,et al.  Toric Varieties Hirzebruch Surfaces and Error-Correcting Codes , 2002, Applicable Algebra in Engineering, Communication and Computing.

[6]  I. Yu.,et al.  What is the maximum number of points on a curve over $F_2$? , 1982 .

[7]  J. Brasselet Introduction to toric varieties , 2004 .

[8]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[9]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  A KEY EQUATION AND THE COMPUTATION OF ERROR VALUES FOR CODES FROM ORDER DOMAINS , 2003, math/0303299.

[12]  Serguei A. Stepanov,et al.  Codes on Algebraic Curves , 1999 .

[13]  S. Hansen,et al.  Error-Correcting Codes from Higher-Dimensional Varieties , 2001 .

[14]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[15]  Hirzebruch Surfaces and Error-Correcting Codes , 2000 .

[16]  G. Ewald Combinatorial Convexity and Algebraic Geometry , 1996 .

[17]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[18]  Notes on toric varieties , 2002, math/0208065.

[19]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[20]  Xin-Wen Wu,et al.  List decoding of q-ary Reed-Muller codes , 2004, IEEE Transactions on Information Theory.