Stark-width regularities of neutral lithium lines within different spectral series

The e ects of upper level ionization potential on Stark widths of di erent spectral series of neutral potassium have been studied and discussed in this paper. Proton impact contribution to the Stark broadening show similar dependences as that of electron impact contribution. It is also shown that the term structure influences the Stark widths. Higher correlation between the empirical parameters were found when the temperature was increased. The deviation of the lowest transition from 4p-nd series trend can be explained by absence of close perturbing states to the emitting state. After establishing these dependences, the relations found were used for prediction of Stark widths for the missed lines, thus avoiding complicated calculation procedures.

[1]  N. Ohishi,et al.  Lithium, Sodium, and Potassium Abundances in Sharp-Lined A-Type Stars , 2011, 1111.1603.

[2]  M. Milosavljevic,et al.  Stark Width Regularities within Neutral Calcium Spectral Series , 2012, Publications of the Astronomical Society of Australia.

[3]  J. Puric,et al.  Stark parameter regularities of neutral helium lines within different spectral series , 2012 .

[4]  J. Puric,et al.  Stark Width Regularities within Beryllium Spectral Series , 2011, Publications of the Astronomical Society of Australia.

[5]  J. Puric,et al.  Stark width regularities within magnesium spectral series , 2011 .

[6]  S. Sahal-Bréchot,et al.  Checking the dependence on the upper level ionization potential of electron impact widths using quantum calculations , 2011 .

[7]  B. Obradović,et al.  Stark Parameter Regularities of Multiply Charged Ion Spectral Lines Originating from the Same Transition Array , 2008 .

[8]  E. Wolfrum,et al.  Probabilistic Lithium beam data analysis , 2008 .

[9]  Jian-rong Shi,et al.  NLTE analysis of the solar potassium abundance , 2006 .

[10]  A. Burrows,et al.  Calculations of the Far-Wing Line Profiles of Sodium and Potassium in the Atmospheres of Substellar-Mass Objects , 2002, astro-ph/0210086.

[11]  A. Alonso-Medina,et al.  Stark broadening parameters predictions and regularities of singly ionized lead , 2002 .

[12]  M. Šćepanović,et al.  General Regularities of Stark Parameters for Ion Lines , 1999 .

[13]  M. Salakhov,et al.  REGULARITIES IN THE STARK WIDTHS AND SHIFTS OF SPECTRAL LINES OF SINGLY-IONIZED ALUMINIUM , 1996 .

[14]  M. H. Miller,et al.  Electron impact broadening parameters predictions from regularities : Fe, I, Fe II, Fe III, Fe IV, C IV, and Si IV , 1993 .

[15]  M. Dimitrijević,et al.  Stark broadening of Li(I) lines , 1991 .

[16]  Cuk,et al.  Regularities and systematic trends in the Stark broadening and shift parameters of spectral lines in plasma. , 1985, Physical review. A, General physics.

[17]  R. White,et al.  A survey of interstellar neutral potassium. I - Abundances and physical conditions in clouds toward 188 early-type stars , 1982 .

[18]  M. Dimitrijević,et al.  Comparison between quantum and semiclassical calculations of the electron impact broadening of the Li I resonance line , 1981 .

[19]  I. Lakicevic,et al.  Stark width and shift dependence on the ionization potential , 1980 .

[20]  S. Djeniže,et al.  Stark broadening and shift of alkali-metal resonance spectral lines , 1977 .

[21]  William L. Barr,et al.  Spectral Line Broadening by Plasmas , 1975, IEEE Transactions on Plasma Science.

[22]  H. Griem SEMIEMPIRICAL FORMULAS FOR THE ELECTRON-IMPACT WIDTHS AND SHIFTS OF ISOLATED ION LINES IN PLASMAS. , 1968 .

[23]  B. Y. akobi Linear Stark Broadening in High-Density Lithium Plasma , 1968 .