Terrain-adaptive bipedal locomotion control

We describe a framework for the automatic synthesis of biped locomotion controllers that adapt to uneven terrain at run-time. The framework consists of two components: a per-footstep end-effector path planner and a per-timestep generalized-force solver. At the start of each footstep, the planner performs short-term planning in the space of end-effector trajectories. These trajectories adapt to the interactive task goals and the features of the surrounding uneven terrain at run-time. We solve for the parameters of the planner for different tasks in offline optimizations. Using the per-footstep plan, the generalized-force solver takes ground contacts into consideration and solves a quadratic program at each simulation timestep to obtain joint torques that drive the biped. We demonstrate the capabilities of the controllers in complex navigation tasks where they perform gradual or sharp turns and transition between moving forwards, backwards, and sideways on uneven terrain (including hurdles and stairs) according to the interactive task goals. We also show that the resulting controllers are capable of handling morphology changes to the character.

[1]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[2]  E. Bizzi,et al.  Human arm trajectory formation. , 1982, Brain : a journal of neurology.

[3]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[4]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[5]  S. Grossberg,et al.  Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. , 1988, Psychological review.

[6]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[7]  M. van de Panne,et al.  A controller for the dynamic walk of a biped across variable terrain , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  Michiel van de Panne,et al.  Guided Optimization for Balanced Locomotion , 1995 .

[9]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[10]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[11]  C. T. Farley,et al.  Leg stiffness and stride frequency in human running. , 1996, Journal of biomechanics.

[12]  Michael F. Cohen,et al.  Efficient generation of motion transitions using spacetime constraints , 1996, SIGGRAPH.

[13]  Jerry E. Pratt,et al.  Virtual model control of a bipedal walking robot , 1997, Proceedings of International Conference on Robotics and Automation.

[14]  Masayuki Inaba,et al.  Footstep planning among obstacles for biped robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[15]  Dimitris N. Metaxas,et al.  Automating gait generation , 2001, SIGGRAPH.

[16]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[17]  Jun Morimoto,et al.  Nonparametric Representation of Policies and Value Functions: A Trajectory-Based Approach , 2002, NIPS.

[18]  J. Chestnutt,et al.  Planning Biped Navigation Strategies in Complex Environments , 2003 .

[19]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[20]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[21]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[22]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[23]  R. Crompton,et al.  The metabolic costs of 'bent-hip, bent-knee' walking in humans. , 2005, Journal of human evolution.

[24]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[25]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[26]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[27]  Timothy Bretl,et al.  Motion Planning for Legged Robots on Varied Terrain , 2008, Int. J. Robotics Res..

[28]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, ACM Trans. Graph..

[29]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[30]  Philippe Beaudoin,et al.  Synthesis of constrained walking skills , 2008, SIGGRAPH Asia '08.

[31]  Zoran Popovic,et al.  Optimal gait and form for animal locomotion , 2009, ACM Trans. Graph..

[32]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, ACM Trans. Graph..

[33]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[34]  Dinesh Manocha,et al.  Motion planning of human-like robots using constrained coordination , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[35]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[36]  Xu Ye,et al.  Advances in estimation of distribution algorithms , 2012 .